A new kinetic Monte Carlo method for modeling phonon transport in quantum dot superlattices is presented. The method uses phonon scattering phase functions and cross sections to describe collisions between phonons and quantum dots. The phase functions and cross sections are generated using molecular dynamics simulation, which is capable of including atomistic effects otherwise unavailable in Monte Carlo approaches. The method is demonstrated for a test case featuring a Si-Ge quantum dot superlattice, and the model is compared against published experiments. It is found that molecular dynamics-derived cross sections must be weighted by diffuse mismatch model-type weighting factors in order to satisfy detailed balance considerations. Additionally, it is found that thin alloy “base layer” films strongly reduce thermal conductivity in these systems and must be included in the modeling to obtain agreement with published experimental data.

References

1.
Goldsmid
,
H. J.
,
2009
,
Introduction to Thermoelectricity
,
R.
Hull
,
R. M.
Osgood
, Jr.
,
J.
Parisi
, and
H.
Warlimont
, eds.,
Springer
,
New York
.
2.
Dresselhaus
,
M. S.
,
Chen
,
G.
,
Tang
,
M. Y.
,
Yang
,
R.
,
Lee
,
H.
,
Wang
,
D.
,
Ren
,
Z.
,
Fleurial
,
J.-P.
, and
Gogna
,
P.
,
2007
, “
New Directions for Low-Dimensional Thermoelectric Materials
,”
Adv. Mater.
,
19
, pp.
1043
1053
.10.1002/adma.200600527
3.
Lee
,
S.-M.
,
Cahill
,
D. G.
, and
Venkatasubramanian
,
R.
,
1997
, “
Thermal Conductivity of Si-Ge Superlattices
,”
Appl. Phys. Lett.
,
70
, p.
118755
.10.1063/1.118755
4.
Chen
,
G.
,
2006
, “
Nanoscale Heat Transfer and Nanostructured Thermoelectrics
,”
IEEE Trans. Compon. Packag. Technol.
,
29
(
2
), pp.
238
246
.10.1109/TCAPT.2006.875895
5.
Balandin
,
A.
,
2005
, “
Nanophononics: Phonon Engineering in Nanostructures and Nanodevices
,”
J. Nanosci. Nanotechnol.
,
5
, pp.
1
8
.10.1166/jnn.2005.175
6.
Liu
,
J. L.
,
Khitun
,
A.
,
Wang
,
K. L.
,
Borca-Tasciuc
,
T.
,
Liu
,
W. L.
,
Chen
,
G.
, and
Yu
,
D. P.
,
2001
, “
Growth of Ge Quantum Dot Superlattices for Thermoelectric Applications
,”
J. Cryst. Growth
,
227–228
, pp.
1111
1115
.10.1016/S0022-0248(01)00998-8
7.
Chen, G., 1996, “Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles,”
ASME J. Heat Transfer
,
118
, pp. 539–545.10.1115/1.2822665
8.
Yang
,
R.
, and
Chen
,
G.
,
2004
, “
Thermal Conductivity Modeling of Periodic Two-Dimensional Nanocomposites
,”
Phys. Rev. B
,
69
, p.
195316
.10.1103/PhysRevB.69.195316
9.
Ni
,
C.
, and
Murthy
,
J. Y.
,
2012
, “
Phonon Transport Modeling Using Boltzmann Transport Equation With Anisotropic Relaxation Times
,”
ASME J. Heat Transfer
,
134
, p.
082401
.10.1115/1.4006169
10.
Chen
,
G.
,
2002
, “
Ballistic-Diffusive Equations for Transient Heat Conduction From Nano to Macroscales
,”
ASME J. Heat Transfer
,
124
, pp.
320
328
.10.1115/1.1447938
11.
Nabovati
,
A.
,
Sellan
,
D. P.
, and
Amon
,
C. H.
,
2011
, “
On the Lattice Boltzmann Method for Phonon Transport
,”
J. Comput. Phys.
,
230
, pp.
5864
5876
.10.1016/j.jcp.2011.03.061
12.
Zuckerman
,
N.
, and
Lukes
,
J. R.
,
2008
, “
Acoustic Phonon Scattering From Particles Embedded in an Anisotropic Medium: A Molecular Dynamics Study
,”
Phys. Rev. B
,
77
, p.
094302
.10.1103/PhysRevB.77.094302
13.
Khitun
,
A.
,
Balandin
,
A.
,
Liu
,
J. L.
, and
Wang
,
K. L.
,
2001
, “
The Effect of the Long-Range Order in a Quantum Dot Array on the In-Plane Lattice Thermal Conductivity
,”
Superlattices and Microstruct.
,
30
, pp.
1
8
.10.1006/spmi.2001.0981
14.
Zhang
,
W.
,
Fisher
,
T. S.
, and
Mingo
,
N.
,
2007
, “
The Atomistic Green’s Function Method: An Efficient Simulation Approach for Nanoscale Phonon Transport
,”
Numer. Heat Transfer, Part B
,
51
, pp.
333
349
.10.1080/10407790601144755
15.
Klitsner
,
T.
,
VanCleve
,
J. E.
,
Fischer
,
H. E.
, and
Pohl
,
R. O.
,
1988
, “
Phonon Radiative Heat Transfer and Surface Scattering
,”
Phys. Rev. B
,
38
, pp.
7576
7594
.10.1103/PhysRevB.38.7576
16.
Peterson
,
R. B.
,
1994
, “
Direct Simulation of Phonon-Mediated Heat Transfer in a Debye Crystal
,”
ASME J. Heat Transfer
,
116
, pp.
815
822
.10.1115/1.2911452
17.
Jacoboni
,
C.
, and
Reggiani
,
L.
,
1983
, “
The Monte Carlo Method for the Solution of Charge Transport in Semiconductors With Applications to Covalent Materials
,”
Rev. Mod. Phys.
,
55
, pp.
645
705
.10.1103/RevModPhys.55.645
18.
Pop
,
E.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
,
2004
, “
Analytic Band Monte Carlo Model for Electron Transport in Si Including Acoustic and Optical Phonon Dispersion
,”
J. Appl. Phys.
,
96
, pp.
4998
5005
.10.1063/1.1788838
19.
Farmer
,
J. T.
, and
Howell
,
J. R.
,
1994
, “
Monte Carlo Prediction of Radiative Heat Transfer in Inhomogeneous, Anisotropic, Nongray Media
,”
AIAA J. Thermophys. Heat Transfer
,
8
, pp.
133
139
.10.2514/3.511
20.
Khitun
,
A.
,
Liu
,
J.
, and
Wang
,
K. L.
,
2004
, “
On the Modeling of Lattice Thermal Conductivity in Semiconductor Quantum Dot Superlattices
,”
Appl. Phys. Lett.
,
84
(
10
), pp.
1762
1764
.10.1063/1.1668317
21.
Liu
,
J. L.
,
Khitun
,
A.
,
Wang
,
K. L.
,
Liu
,
W. L.
,
Chen
,
G.
,
Xie
,
Q. H.
, and
Thomas
,
S. G.
,
2003
, “
Cross-Plane Thermal Conductivity of Self-Assembled Ge Quantum Dot Superlattices
,”
Phys. Rev. B
,
67
, p.
165333
.10.1103/PhysRevB.67.165333
22.
Metropolis
,
N.
,
Rosenbluth
,
A. W.
,
Rosenbluth
,
M. N.
,
Teller
,
A. H.
, and
Teller
,
E.
,
1953
, “
Equation of State Calculations by Fast Computing Machines
,”
J. Chem. Phys.
,
21
, pp.
1087
1092
.10.1063/1.1699114
23.
Jeng
,
M.-S.
,
Yang
,
R.
,
Song
,
D.
, and
Chen
,
G.
,
2008
, “
Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation
,”
ASME J. Heat Transfer
,
130
, p.
042410
.10.1115/1.2818765
24.
Klemens
,
P. G.
,
1951
, “
The Thermal Conductivity of Dielectric Solids at Low Temperatures (Theoretical)
,”
Proc. R. Soc., London, Ser. A
,
208
, pp.
108
133
.10.1098/rspa.1951.0147
25.
Klemens
,
P. G.
,
1955
, “
The Scattering of Low-Frequency Lattice Waves by Static Imperfections
,”
Proc. Phys. Soc., London
,
A68
, pp.
1113
1128
.10.1088/0370-1298/68/12/303
26.
Broido
,
D. A.
,
Ward
,
A.
, and
Mingo
,
N.
,
2005
, “
Lattice Thermal Conductivity of Silicon From Empirical Interatomic Potentials
,”
Phys. Rev. B
,
72
, p.
014308
.10.1103/PhysRevB.72.014308
27.
Jacoboni
,
C.
, and
Reggiani
L.
,
1983
, “
The Monte Carlo Method for the Solution of Charge Transport in Semiconductors With Applications to Covalent Materials
,”
Rev. Mod. Phys.
,
55
, pp.
645
705
.10.1103/RevModPhys.55.645
28.
McGaughey
,
A. J.
, and
Kaviany
,
M.
,
2004
, “
Quantitative Validation of the Boltzmann Transport Equation Phonon Thermal Conductivity Model Under the Single-Mode Relaxation Time Approximation
,”
Phys. Rev. B
,
69
, p.
094303
.10.1103/PhysRevB.69.094303
29.
Chernatynskiy
,
A.
,
Turney
,
J. E.
,
McGaughey
,
A. J. H.
,
Amon
,
C. H.
, and
Phillpot
,
S. R.
,
2011
, “
Phonon-Mediated Thermal Conductivity in Ionic Solids by Lattice Dynamics-Based Methods
,”
J. Am. Ceram. Soc.
,
94
, pp.
3523
3531
.10.1111/j.1551-2916.2011.04743.x
30.
Mazumder
,
S.
, and
Majumdar
,
A.
,
2001
, “
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization
,”
ASME J. Heat Transfer
,
123
, pp.
749
759
.10.1115/1.1377018
31.
Chen
,
Y.
,
Li
,
D.
,
Lukes
,
J. R.
, and
Majumdar
,
A.
,
2005
, “
Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity
,”
ASME J. Heat Transfer
,
127
, pp.
1129
1137
.10.1115/1.2035114
32.
Zuckerman
,
N.
,
2011
, “
Propagation and Scattering of Mechanical Vibrations in Semiconductor Materials
,” Ph.D. thesis, The University of Pennsylvania, Philadelphia, PA.
33.
Holland
,
M. G.
,
1963
, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
,
132
(
6
), pp.
2461
2471
.10.1103/PhysRev.132.2461
34.
Majumdar
,
A.
,
1993
, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
,
115
(
7
), pp.
7
16
.10.1115/1.2910673
35.
Lacroix
,
D.
,
Joulain
,
K.
, and
Lemonnier
,
D.
,
2005
, “
Monte Carlo Transient Phonon Transport in Silicon and Germanium at Nanoscales
,”
Phys. Rev. B
,
72
, p.
064305
.10.1103/PhysRevB.72.064305
36.
Tian
,
W.
, and
Yang
,
R.
,
2007
, “
Thermal conductivity modeling of compacted nanowire composites
,”
J. Appl. Phys.
,
101
, p.
054320
.10.1063/1.2653777
37.
Randrianalisoa
,
J.
, and
Baillis
,
D.
,
2008
, “
Monte Carlo Simulation of Steady-State Microscale Phonon Heat Transport
,”
ASME J. Heat Transfer
,
130
, p.
072404
.10.1115/1.2897925
38.
Randrianalisoa
,
J.
, and
Baillis
,
D.
,
2008
, “
Monte Carlo Simulation of Cross-Plane Thermal Conductivity of Nanostructured Porous Silicon Films
,”
J. Appl. Phys.
,
103
, p.
053502
.10.1063/1.2841697
39.
Moore
,
A.
,
Saha
,
S.
,
Prasher
,
R.
, and
Shi
,
L.
,
2008
, “
Phonon Backscattering and Thermal Conductivity Suppression in Sawtooth Nanowires
,”
Appl. Phys. Lett.
,
94
, p.
083112
.10.1063/1.2970044
40.
Hao
,
Q.
,
Chen
,
G.
, and
Jeng
,
M.
,
2009
, “
Frequency-Dependent Monte Carlo Simulations of Phonon Transport in Two-Dimensional Porous Silicon With Aligned Pores
,”
J. Appl. Phys.
,
106
, p.
114321
.10.1063/1.3266169
41.
Hao
,
Q.
,
Zhu
,
G.
,
Joshi
,
G.
,
Wang
,
X.
,
Minnich
,
A.
,
Ren
,
Z.
, and
Chen
,
G.
,
2010
, “
Theoretical Studies on the Thermoelectric Figure of Merit of Nanograined Bulk Silicon
,”
Appl. Phys. Lett.
,
97
, p.
063109
.10.1063/1.3478459
42.
Henry
,
A.
, and
Chen
,
G.
,
2008
, “
Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics
,”
J. Comput. Theor. Nanosci.
,
5
, pp.
1
12
.10.1166/jctn.2008.001a
43.
Mittal
,
A.
, and
Mazumder
,
S.
,
2010
, “
Monte Carlo Study of Phonon Heat Conduction in Silicon Thin Films Including Contributions of Optical Phonons
,”
ASME J. Heat Transfer
,
132
, p.
052402
.10.1115/1.4000447
44.
Narumanchi
,
S. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
,
2004
, “
Submicron Heat Transport Model in Silicon Accounting for Phonon Dispersion and Polarization
,”
ASME J. Heat Transfer
,
126
, pp.
946
955
.10.1115/1.1833367
45.
Han
,
Y.-J.
, and
Klemens
,
P. G.
,
1993
, “
Anharmonic Thermal Resisitivity of Dielectric Crystals at Low Temperatures
,”
Phys. Rev. B
,
48
(
9
), pp.
6033
6042
.10.1103/PhysRevB.48.6033
46.
Wang
,
Z.
,
Zhao
,
R.-J.
, and
Chen
,
Y.-F.
,
2010
, “
Monte Carlo Simulation of Phonon Transport in Variable Cross-Section Nanowires
,”
Sci. China Technol. Sci.
,
53
, pp.
429
434
.10.1007/s11431-009-0338-3
47.
Huang
,
M.-J.
,
Tsai
,
T.-C.
,
Liu
,
L.-C.
,
Jeng
,
M.-S.
, and
Yang
,
C.-C.
,
2009
, “
A Fast Monte-Carlo Solver for Phonon Transport in Nanostructured Semiconductors
,”
Comput. Model. Eng. Sci.
,
42
(
2
), pp.
107
130
.10.3970/cmes.2009.042.107
48.
Huang
,
M.-J.
,
Tsai
,
T.-C.
, and
Liu
,
L.-C.
,
2010
, “
A Study of Phonon Transport in Si/Ge Superlattice Thin Films Using a Fast MC Solver
,”
J. Electron. Mater.
,
39
, pp.
1875
1879
.10.1007/s11664-009-1066-y
49.
Chen
,
G.
,
1998
, “
Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices
,”
Phys. Rev. B
,
57
, pp.
14958
14973
.10.1103/PhysRevB.57.14958
50.
Masao
,
Y.
,
Okano
,
M.
, and
Matsumoto
,
M.
,
2011
, “
DSMC Scheme to Study Phonon Dynamics
,”
J. Mech. Sci. Technol.
,
25
(
1
), pp.
21
26
.10.1007/s12206-010-1111-z
51.
Péraud
,
J.-P.
, and
Hadjiconstantinou
,
N. G.
,
2011
, “
Efficient Simulation of Multidimensional Phonon Transport Using Energy-Based Variance-Reduced Monte Carlo Formulations
,”
Phys. Rev. B
,
84
, p.
205331
.10.1103/PhysRevB.84.205331
52.
Zuckerman
,
N.
, and
Lukes
,
J. R.
,
2008
, “
Monte Carlo Modeling of Phonon Transport Using Scattering Phase Functions
,”
Proceedings of the 3rd ASME Energy Nanotechnology International Conference (ENIC2008)
, Jacksonville, FL, Aug. 10–14, Paper No. ENIC2008-53022.
53.
Ashcroft
,
N. W.
, and
Mermin
,
N. D.
,
1976
,
Solid State Physics
,
Thomson Learning
, London.
54.
Brockhouse
,
B. N.
,
1959
, “
Lattice Vibrations in Silicon and Germanium
,”
Phys. Rev. Lett.
,
2
(
6
), pp.
256
258
.10.1103/PhysRevLett.2.256
55.
Goicochea
,
J.
,
Madrid
,
M.
, and
Amon
,
C.
,
2010
, “
Thermal Properties for Bulk Silicon Based on the Determination of Relaxation Times Using Molecular Dynamics
,”
ASME J. Heat Transfer
,
132
, p.
012401
.10.1115/1.3211853
56.
Sharma
,
P. C.
, and
Rose
,
M. F.
,
1988
, “
Three-Phonon Scattering Processes and Their Role in Phonon Thermal Conductivity of Silicon
,”
J. Solid State Chem.
,
73
, pp.
92
97
.10.1016/0022-4596(88)90058-8
57.
Glassbrenner
,
C. J.
, and
Slack
,
G. A.
,
1964
, “
Thermal Conductivity of Silicon and Germanium from 3 K to the Melting Point
,”
Phys. Rev.
,
134
, pp.
A1058
A1069
.10.1103/PhysRev.134.A1058
58.
Ward
,
A.
, and
Broido
,
D. A.
,
2010
, “
Intrinsic Phonon Relaxation Times From First-Principles Studies of the Thermal Conductivities of Si and Ge
,”
Phys. Rev. B
,
81
, p.
085205
.10.1103/PhysRevB.81.085205
59.
Kim
,
W.
, and
Majumdar
,
A.
,
2006
, “
Phonon Scattering Cross Section of Polydispersed Spherical Nanoparticles
,”
J. Appl. Phys.
,
99
, p.
084306
.10.1063/1.2188251
60.
Stillinger
,
F. H.
, and
Weber
,
T. A.
,
1985
, “
Computer Simulation of Local Order in Condensed Phases of Silicon
,”
Phys. Rev. B
,
31
, pp.
5262
5271
.10.1103/PhysRevB.31.5262
61.
Ding
,
K.
, and
Andersen
,
H. C.
,
1986
, “
Molecular-Dynamics Simulation of Amorphous Germanium
,”
Phys. Rev. B
,
34
, pp.
6987
6991
.10.1103/PhysRevB.34.6987
62.
Vincenti
,
W. G.
, and
Kruger
,
C. H.
,
1977
,
Introduction to Physical Gas Dynamics
,
Robert Krieger
,
New York
.
63.
Hall
,
J. J.
,
1967
, “
Electronic Effects in the Elastic Constants of n-Type Silicon
,”
Phys. Rev.
,
161
, pp.
756
761
.10.1103/PhysRev.161.756
64.
Zuckerman
,
N.
, and
Lukes
,
J. R.
,
2007
, “
Atomistic Visualization of Ballistic Phonon Transport
,”
Proceedings of the 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference
, Vancouver, British Columbia, July 8–12, Paper No. HT2007-32674.
65.
Przybilla
,
J.
,
Korn
,
M.
, and
Wegler
,
U.
,
2006
, “
Radiative Transfer of Elastic Waves Versus Finite Difference Simulations in Two-Dimensional Random Media
,”
J. Geophys. Res.
,
111
, p.
B04305
.10.1029/2005JB003952
66.
Yamamoto
,
M.
, and
Sato
,
H.
,
2010
, “
Multiple Scattering and Mode Conversion Revealed by an Active Seismic Experiment at Asama Volcano, Japan
,”
J. Geophys. Res.
,
115
, p.
B07304
.10.1029/2009JB007109
67.
Aki
,
K.
,
1992
, “
Scattering Conversions P to S Versus S to P
,”
Bull. Seismol. Soc. Am.
,
82
(
4
), pp.
1969
1972
.
68.
Ying
,
C. F.
, and
Truell
,
R.
,
1956
, “
Scattering of a Plane Longitudinal Wave by a Spherical Obstacle in an Isotropically Elastic Solid
,”
J. Appl. Phys.
,
27
(
9
), pp.
1086
1097
.10.1063/1.1722545
69.
Swartz
,
E. T.
, and
Pohl
,
R. O
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
(
3
), pp.
605
668
.10.1103/RevModPhys.61.605
70.
Korneev
, V
. A.
, and
Johnson
,
L. R.
,
1993
, “
Scattering of Elastic Waves by a Spherical Inclusion —I. Theory and Numerical Results
,”
Geophys. J. Int.
,
115
, pp.
230
250
.10.1111/j.1365-246X.1993.tb05601.x
71.
Grundmann
,
M.
,
Ledentsov
,
N. N.
,
Kirstaedter
,
N.
,
Heinrichsdorff
,
F.
,
Krost
,
A.
,
Bimberg
,
D.
,
Kosogov
,
A. O.
,
Ruvimov
,
S. S.
,
Werner
,
P.
,
Ustinov
,
M.
,
Kop’ev
,
P.S.
, and
Alferov
,
Zh. I.
,
1998
, “
Semiconductor Quantum Dots for Application in Diode Lasers
,”
Thin Solid Films
,
318
, pp.
83
87
.10.1016/S0040-6090(97)01144-9
72.
Bauer
,
G.
,
Darhuber
,
A. A.
, and
Holy
, V
.
,
1999
, “
Self-Assembled Germanium-Dot Multilayers Embedded in Silicon
,”
Cryst. Res. Technol.
,
34
, pp.
197
209
.10.1002/(SICI)1521-4079(199902)34:2<197::AID-CRAT197>3.0.CO;2-A
73.
Lipsanen
,
H.
,
Sopanen
,
M.
,
Tulkki
,
J.
,
Ahopelto
,
J.
,
Brasken
,
M.
, and
Lindberg
,
M.
,
1999
, “
Growth and Optical Properties of Strain-Induced Quantum Dots
,”
Phys. Scr.
,
T79
, pp.
20
26
.10.1238/Physica.Topical.079a00020
74.
Thanh
,
L.
, and
Yam
, V
.
,
2003
, “
Superlattices of Self-Assembled Ge/Si (001) Quantum Dots
,”
Appl. Surf. Sci.
,
212
, pp.
296
304
.10.1016/S0169-4332(03)00078-3
75.
Bao
,
Y.
,
Balandin
,
A. A.
,
Liu
,
J. L.
,
Liu
,
J.
, and
Xie
,
Y. H.
,
2004
, “
Experimental Investigation of Hall Mobility in Ge/Si Quantum Dot Superlattices
,”
Appl. Phys. Lett.
,
84
, pp.
3355
3357
.10.1063/1.1713049
76.
Lee
,
M. L.
, and
Venkatasubramanian
,
R.
,
2008
, “
Effect of Nanodot Areal Density and Period on Thermal Conductivity in SiGe/Si Nanodot Superlattices
,”
Appl. Phys. Lett.
,
92
, p.
053112
.10.1063/1.2842388
77.
Khitun
,
A.
,
Liu
,
J.
, and
Wang
,
K. L.
,
2004
, “
On the Modeling of Lattice Thermal Conductivity in Semiconductor Quantum Dot Superlattices
,”
Appl. Phys. Lett.
,
84
(
10
), pp.
1762
1764
.10.1063/1.1668317
78.
Liu
,
J. L.
,
Khitun
,
A.
,
Wang
,
K. L.
,
Liu
,
W. L.
,
Chen
,
G.
,
Xie
,
Q. H.
, and
Thomas
,
S. G.
,
2003
, “
Cross-Plane Thermal Conductivity of Self-Assembled Ge Quantum Dot Superlattices
,”
Phys. Rev. B
,
67
, p.
165333
.10.1103/PhysRevB.67.165333
79.
Alvarez-Quintana
,
J.
,
Alvarez
,
X.
,
Rodriguez-Viejo
,
J.
,
Jou
,
D.
,
Lacharmoise
,
P. D.
,
Bernardi
,
A.
,
Goñi
,
A. R.
, and
Alonso
,
M. I.
,
2008
, “
Cross-Plane Thermal Conductivity Reduction of Vertically Uncorrelated Ge/Si Quantum Dot Superlattices
,”
Appl. Phys. Lett.
,
93
, p.
013112
.10.1063/1.2957038
80.
Pernot
,
G.
,
Stoffel
,
M.
,
Savic
, I
.
,
Pezzoli
,
F.
,
Chen
,
P.
,
Savelli
,
G.
,
Jacquot
,
A.
,
Schumann
,
J.
,
Denker
,
U.
,
Mönch
, I
.
,
Deneke
,
C.
,
Schmidt
,
O. G.
,
Rampnoux
,
J. M.
,
Wang
,
S.
,
Plissonnier
,
M.
,
Rastelli
,
A.
,
Dilhaire
,
S.
, and
Mingo
,
N.
,
2010
, “
Precise Control of Thermal Conductivity at the Nanoscale Through Individual Phonon-Scattering Barriers
,”
Nature Mater.
,
9
, pp.
491
495
.10.1038/nmat2752
81.
Bernardi
,
A.
,
Alonso
,
M. I.
,
Goñi
,
A. R.
,
Ossó
,
J. O.
, and
Garriga
,
M.
,
2006
, “
Density Control on Self-Assembling of Ge Islands Using Carbon-Alloyed Strained SiGe Layers
,”
Appl. Phys. Lett.
,
89
, p.
101921
.10.1063/1.2349317
82.
Schelling
,
P. K.
, and
Phillpot
,
S. R.
,
2003
, “
Multiscale Simulation of Phonon Transport in Superlattices
,”
J. Appl. Phys.
,
93
(
9
), pp.
5377
5387
.10.1063/1.1561601
83.
Crain’s Petrophysical Handbook, accessed
2008
, http://spec2000.net/01-index.htm
84.
Balamane
,
H.
,
Halicioglu
,
T.
, and
Tiller
,
W. A.
,
1992
, “
Comparative Study of Silicon Empirical Interatomic Potentials
,”
Phys. Rev. B
,
46
, pp.
2250
2279
.10.1103/PhysRevB.46.2250
85.
Jian
,
Z.
,
Kaiming
,
Z.
, and
Xide
,
X.
,
1990
, “
Modification of Stillinger-Weber Potentials for Si and Ge
,”
Phys. Rev. B
,
41
, pp.
12915
12918
.10.1103/PhysRevB.41.12915
You do not currently have access to this content.