We analytically and numerically consider the hydrodynamic and thermal transport behavior of fully developed laminar flow through a superhydrophobic (SH) parallel-plate channel. Hydrodynamic slip length, thermal slip length and heat flux are prescribed at each surface. We first develop a general expression for the Nusselt number valid for asymmetric velocity profiles. Next, we demonstrate that, in the limit of Stokes flow near the surface and an adiabatic and shear-free liquid–gas interface, both thermal and hydrodynamic slip lengths can be found by redefining existing solutions for conduction spreading resistances. Expressions for the thermal slip length for pillar and ridge surface topographies are determined. Comparison of fundamental half-space solutions for the Laplace and Stokes equations facilitate the development of expressions for hydrodynamic slip length over pillar-structured surfaces based on existing solutions for the conduction spreading resistance from an isothermal source. Numerical validation is performed and an analysis of the idealized thermal transport behavior suggests conditions under which superhydrophobic microchannels may enhance heat transfer.

References

1.
Quéré
,
D.
,
2008
, “
Wetting and Roughness
,”
Annu. Rev. Mater. Res.
,
38
, pp.
71
99
.10.1146/annurev.matsci.38.060407.132434
2.
Ou
,
J.
,
Perot
,
B.
, and
Rothstein
,
J. P.
,
2004
, “
Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
16
(
12
), p.
4635
.10.1063/1.1812011
3.
Ou
,
J.
, and
Rothstein
,
J. P.
,
2005
, “
Direct Velocity Measurements of the Flow Past Drag-Reducing Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
17
(
10
), p.
3606
.10.1063/1.2109867
4.
Woolford
,
B.
,
Jeffs
,
K.
,
Maynes
,
D.
, and
Webb
,
B. W.
,
2005
, “
Laminar Fully-Developed Flow in a Microchannel With Patterned Ultrahydrophobic Walls
,”
Proceedings of HT2005
, ASME.
5.
Maynes
,
D.
,
Jeffs
,
K.
,
Woolford
,
B.
, and
Webb
,
B. W.
,
2007
, “
Laminar Flow in a Microchannel With Hydrophobic Surface Patterned Microribs Oriented Parallel to the Flow Direction
,”
Phys. Fluids
,
19
, p.
093603
.10.1063/1.2772880
6.
Joseph
,
P.
,
2005
, “
Étude expérimentale du glissement sur surfaces lisses et texturées
,” Ph.D. thesis, Université Paris 6, Paris, France.
7.
Joseph
,
P.
,
Cottin-Bizonne
,
C.
,
Benoit
,
J. M.
,
Ybert
,
C.
,
Journet
,
C.
,
Tabeling
,
P.
, and
Bocquet
,
L.
,
2006
, “
Slippage of Water Past Superhydrophobic Carbon Nanotube Forests in Microchannels
,”
Phys. Rev. Lett.
,
97
(
15
), p.
6104
.10.1103/PhysRevLett.97.156104
8.
Enright
,
R.
,
Krupenkin
,
T. N.
,
Kolodner
,
P.
,
Hodes
,
M.
,
Salamon
,
T.
, and
Dalton
,
T.
,
2008
, “
Effects of Interfacial Position on Drag Reduction in a Superhydrophobic Microchannel
,”
Proceedings of ICNMM2008
, ASME.
9.
Lee
,
C.
,
Choi
,
C. H.
, and
Kim
,
C. J.
,
2008
, “
Structured Surfaces for a Giant Liquid Slip
,”
Phys. Rev. Lett.
,
101
(
6
), p.
4501
.10.1103/PhysRevLett.101.064501
10.
Maynes
,
D.
,
Webb
,
B. W.
, and
Davies
,
J.
,
2008
, “
Thermal Transport in a Microchannel Exhibiting Ultrahydrophobic Microribs Maintained at Constant Temperature
,”
ASME J. Heat Transfer
,
130
(
2
), p.
2402
.10.1115/1.2789715
11.
Maynes
,
D.
,
Webb
,
B. W.
,
Crockett
,
J.
, and
Solovjov
,
V.
,
2013
, “
Analysis of Laminar Slip-Flow Thermal Transport in Microchannels With Transverse Ribs and Cavity Structured Superhydrophobic Walls at Constant Heat Flux
,”
ASME J. Heat Transfer
,
135
(
2
), p.
021701
.10.1115/1.4007429
12.
Baier
,
T.
,
Steffes
,
C.
, and
Hardt
,
S.
,
2010
, “
Thermocapillary Flow on Superhydrophobic Surfaces
,”
Phys. Rev. E
,
82
, p.
037301
.10.1103/PhysRevE.82.037301
13.
Rosengarten
,
G.
,
Stanley
,
C.
, and
Kwok
,
F.
,
2008
, “
Superinsulating Heat Transfer Surfaces for Microfluidic Channels
,”
Int. J. Transp. Phenom.
,
10
, pp.
293
306
.
14.
Ybert
,
C.
,
Barentin
,
C.
,
Cottin-Bizonne
,
C.
,
Joseph
,
P.
, and
Bocquet
,
L.
,
2007
, “
Achieving Large Slip With Superhydrophobic Surfaces: Scaling Laws for Generic Geometries
,”
Phys. Fluids
,
19
(
12
), p.
3601
.10.1063/1.2815730
15.
Lauga
,
E.
, and
Stone
,
H. A.
,
2003
, “
Effective Slip in Pressure-Driven Stokes Flow
,”
J. Fluid Mech.
,
489
, pp.
55
77
.10.1017/S0022112003004695
16.
Philip
,
J. R.
,
1972
, “
Flows Satisfying Mixed No-Slip and No-Shear Conditions
,”
Z. Agnew. Math. Phys.
,
23
, pp.
353
370
.10.1007/BF01595477
17.
Philip
,
J. R.
,
1972
, “
Integral Properties of Flows Satisfying Mixed No-Slip and No-Shear Conditions
,”
Z. Agnew. Math. Phys.
,
23
, pp.
960
968
.10.1007/BF01596223
18.
Navier
,
C. L. M. H.
,
1823
, “
Mémoire sur les lois du movement des fluids
,”
Mémoires de l'Académie Royale des Sciences de l'Institut de France
,
6
, pp.
389
440
.
19.
Cottin-Bizonne
,
C.
,
Barentin
,
C.
,
Charlaix
,
E.
,
Bocquet
,
L.
, and
Barrat
,
J. L.
,
2004
, “
Dynamics of Simple Liquids at Heterogenous Surfaces: Molecular-Dynamics Simulations and Hydrodynamic Description
,”
Eur. Phys. J. E
,
15
, pp.
427
438
.10.1140/epje/i2004-10061-9
20.
Choi
,
C. H.
,
Ulmanella
,
U.
,
Kim
,
J.
,
Ho
,
C. M.
, and
Kim
,
C. J.
,
2006
, “
Effective Slip and Friction Reduction in Nanograted Superhydrophobic Microchannels
,”
Phys. Fluids
,
18
(
8
)
, p.
087105
.10.1063/1.2337669
21.
Davis
,
A. M. J.
, and
Lauga
,
E.
,
2010
, “
Hydrodynamic Friction of Fakir-Like Superhydrophobic Surfaces
,”
J. Fluid Mech.
,
661
, pp.
402
411
.10.1017/S0022112010003460
22.
Davis
,
A. M. J.
, and
Lauga
,
E.
,
2009
, “
Geometric Transition in Friction for Flow Over a Bubble Mattress
,”
Phys. Fluids
,
21
(
1
), p.
011701
.10.1063/1.3067833
23.
Ng
,
C. O.
, and
Wang
,
C. Y.
,
2010
, “
Apparent Slip Arising From Stokes Shear Flow Over a Bidimensional Patterned Surface
,”
Microfluid. Nanofluid.
,
8
, pp.
361
371
.10.1007/s10404-009-0466-x
24.
Ng
,
C. O.
, and
Wang
,
C. Y.
,
2009
, “
Stokes Shear Flow Over a Grating: Implications for Superhydrophobic Slip
,”
Phys. Fluids
,
21
(
1
), p.
3602
.10.1063/1.3068384
25.
Woolford
,
B.
,
Maynes
,
D.
, and
Webb
,
B. W.
,
2008
, “
Liquid Flow Through Microchannels With Grooved Walls Under Wetting and Superhydrophobic Conditions
,”
Microfluid. Nanofluid.
,
7
(
1
), pp.
121
135
.10.1007/s10404-008-0365-6
26.
Davies
,
J.
,
Maynes
,
D.
,
Webb
,
B. W.
, and
Woolford
,
B.
,
2006
, “
Laminar Flow in a Microchannel With Superhydrophobic Walls Exhibiting Transverse Ribs
,”
Phys. Fluids
,
18
(
8
), p.
7110
.10.1063/1.2336453
27.
Sparrow
,
E. M.
,
Lin
,
S. H.
, and
Lundgren
,
T. S.
,
1964
, “
Flow Development in the Hydrodynamic Entrance Region of Tubes and Ducts
,”
Phys. Fluids
,
7
(
3
), pp.
338
347
.10.1063/1.1711204
28.
Sparrow
,
E. M.
, and
Lin
,
S. H.
,
1962
, “
Laminar Heat Transfer in Tubes Under Slip-Flow Conditions
,”
ASME J. Heat Transfer
,
84
(
4
), pp.
363
369
.10.1115/1.3684399
29.
Bocquet
,
L.
, and
Barrat
,
J.-L.
,
2007
, “
Flow Boundary Conditions From Nano- to Micro-Scales
,”
Soft Matter
,
3
(
6
), pp. 685–693.10.1039/B616490K
30.
Nield
,
D. A.
,
2004
, “
Forced Convection in a Parallel Plate Channel With Asymmetric Heating
,”
Int. J. Heat Mass Transfer
,
47
, pp.
5609
5612
.10.1016/j.ijheatmasstransfer.2004.07.006
31.
Nield
,
D. A.
,
2008
, “
Erratum to “Forced Convection in a Parallel Plate Channel With Asymmetric Heating
,””
Int. J. Heat Mass Transfer
,
51
, p.
2108
.10.1016/j.ijheatmasstransfer.2007.09.044
32.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
, 3rd ed.,
McGraw-Hill
,
New York
.
33.
Inman
,
R. M.
,
1964
, “
Laminar Slip Flow Heat Transfer in a Parallel-Plate Channel or a Round Tube With Uniform Wall Heating
,” NASA Technical Note D-2393, Lewis Research Center, Cleveland, OH.
34.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Ganić
,
E. N.
,
1985
,
Handbook of Heat Transfer Fundamentals
, 2nd ed.,
McGraw-Hill
,
New York
.
35.
Enright
,
R.
,
Hodes
,
M.
,
Salamon
,
T. R.
, and
Muzychka
,
Y.
,
2010
, “
Analysis and Simulation of Heat Transfer in a Superhydrophobic Microchannel
,”
Proceedings of 14th International Heat Transfer Conference
, Vol. 6, August, ASME, pp. 157–168.
36.
Cottin-Bizonne
,
C.
,
Barentin
,
C.
, and
Bocquet
,
L.
,
2012
, “
Scaling Laws for Slippage on Superhydrophobic Fractal Surfaces
,”
Physics of Fluids
,
24
(
1
), p. 012001.10.1063/1.3674300
37.
Bejan
,
A.
, and
Kraus
,
A. D.
, eds.,
2003
,
Heat Transfer Handbook
,
John Wiley & Sons
,
Hoboken, NJ
.
38.
Mikic
,
B. B.
, and
Rohsenow
,
W. M.
,
1966
, “
Thermal Contact Resistance
,” MIT Mechanical Engineering Report No. DSR 74542-41.
39.
Negus
,
K. J.
,
Yovanovich
,
M. M.
, and
Beck
,
J. V.
,
1989
, “
On the Nondimensionalization of Constriction Resistance for Semi-Infinate Heat Flux Tubes
,”
ASME J. Heat Transfer
,
111
, pp.
804
807
.10.1115/1.3250755
40.
Veziroglu
,
T. N.
, and
Chandra
,
S.
,
1969
, “
Thermal Conductance of Two-Dimensional Constrictions
,”
Prog. Astronaut. Aeronaut.
,
21
, pp.
591
615
.
41.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, eds.,
1959
,
Conduction of Heat in Solids
, 2nd ed.,
Oxford University Press
,
London
.
42.
Lamb
,
H.
, ed.,
1932
,
Hydrodynamics
, 6th ed.,
Cambridge University Press
,
Cambridge, UK
.
43.
Yovanovich
,
M. M.
,
1975
, “
General Expressions for Constriction Resistances Due To Arbitrary Flux Distributions at Non-Symmetric, Coaxial Contacts
,” 13th Aerospace Sciences Meeting, AIAA.
44.
Negus
,
K. J.
, and
Yovanovich
,
M. M.
,
1984
, “
Constriction Resistance of Circular Flux Tubes With Mixed Boundary Conditions by Linear Superposition of Neumann Solutions
,”
ASME National Heat Transfer Conference
, ASME.
45.
Lobaton
,
E. J.
, and
Salamon
,
T.
,
2007
, “
Computation of Constant Mean Curvature Surfaces: Application to the Gas-Liquid Interface of a Pressurized Fluid on a Superhydrophobic Surface
,”
J. Colloid Interface Sci.
,
314
, pp.
184
198
.10.1016/j.jcis.2007.05.059
46.
Sbragaglia
,
M.
, and
Prosperetti
,
A.
,
2007
, “
A Note on the Effective Slip Properties for Microchannel Flows With Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
19
(
04
), p.
3603
.10.1063/1.2716438
47.
Teo
,
C. J.
, and
Khoo
,
B. C.
,
2009
, “
Flow Past Superhydrophobic Surfaces Containing Longitudinal Grooves: Effects of Interface Curvature
,”
Microfluid. Nanofluid.
,
9
(
2
), pp.
499
511
.10.1007/s10404-010-0566-7
48.
Salamon
,
T.
,
Lee
,
W.
,
Krupenkin
,
T.
,
Hodes
,
M.
,
Kolodner
,
P.
,
Enright
,
R.
, and
Salinger
,
A.
,
2005
, “
Numerical Simulation of Fluid Flow in microchannels With Superhydrophobic Walls
,”
Proceedings of IMECE 2005
, ASME.
49.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High Performance Heat Sinking for VLSI
,”
IEEE Electron. Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
50.
Hodes
,
M.
,
Zhang
,
R.
,
Wilcoxon
,
R.
, and
Lower
,
N.
,
2012
, “
On the Cooling Potential of Galinstan-Based Minichannel Heat Sinks
,” ITherm 2012, IEEE.
You do not currently have access to this content.