Numerical simulations are performed to investigate the natural convection heat transfer performance of non-Newtonian power-law fluids in a cavity bounded by wavy vertical walls with different temperatures and flat horizontal walls under adiabatic conditions. The results show that for Rayleigh numbers greater than 103, the mean Nusselt number has a significantly increase as the flow behavior index is decreased. Moreover, it is shown that in the convection-dominated regime, the mean Nusselt number increases with an increasing Rayleigh number, while in the conduction-dominated regime, the mean Nusselt number remains approximately constant. Finally, it is shown that for a given fluid, the heat transfer performance can be optimized via an appropriate tuning of the wavelength and amplitude of the wavy surface depending on the Rayleigh number.

References

1.
Ostrach
,
S.
,
1988
, “
Natural Convection in Enclosures
,”
ASME J. Heat Transfer
,
110
, pp.
1175
1190
.10.1115/1.3250619
2.
Mahmud
,
S.
,
Das
,
P. K.
,
Hyder
,
N.
, and
Islam
,
A. K. M. S.
,
2002
, “
Free Convection in an Enclosure With Vertical Wavy Walls
,”
Int. J. Therm. Sci.
,
41
, pp.
440
446
.10.1016/S1290-0729(02)01336-4
3.
Mahmud
,
S.
, and
Islam
,
A. K. M. S.
,
2003
, “
Laminar Free Convection and Entropy Generation Inside an Inclined Wavy Enclosure
,”
Int. J. Therm. Sci.
,
42
, pp.
1003
1012
.10.1016/S1290-0729(03)00076-0
4.
Oztop
,
H. F.
,
Abu-Nada
,
E.
,
Varol
,
Y.
, and
Chmkha
,
A.
,
2011
, “
Natural Convection in Wavy Enclosures With Volumetric Heat Sources
,”
Int. J. Therm. Sci.
,
50
, pp.
502
514
.10.1016/j.ijthermalsci.2010.10.015
5.
Esmaeilpour
,
M.
, and
Abdollahzadeh
,
M.
,
2012
, “
Free Convection and Entropy Generation of Nanofluid Inside an Enclosure With Different Patterns of Vertical Wavy Walls
,”
Int. J. Therm. Sci.
,
52
, pp.
127
136
.10.1016/j.ijthermalsci.2011.08.019
6.
Cho
,
C. C.
,
Chen
,
C. L.
, and
Chen
,
C. K.
,
2012
, “
Natural Convection Heat Transfer Performance in Complex-Wavy-Wall Enclosed Cavity Filled With Nanofluid
,”
Int. J. Therm. Sci.
,
60
, pp.
255
263
.10.1016/j.ijthermalsci.2012.05.001
7.
Kim
,
G. B.
,
Hyun
,
J. M.
, and
Kwak
,
H. S.
,
2003
, “
Transient Buoyant Convection of a Power-Law Non-Newtonian Fluid in an Enclosure
,”
Int. J. Heat Mass Transfer
,
46
, pp.
3605
3617
.10.1016/S0017-9310(03)00149-2
8.
Lamsaadi
,
M.
,
Naimi
,
M.
,
Hasnaoui
,
M.
, and
Mamou
,
M.
,
2006
, “
Natural Convection in a Titled Rectangular Slot Containing Non-Newtonian Power-Law Fluids and Subject to a Longitudinal Thermal Gradient
,”
Numer. Heat Transfer, Part A
,
50
, pp.
561
583
.10.1080/10407780600599513
9.
Turan
,
O.
,
Sachdeva
,
A.
,
Chakraborty
,
N.
, and
Poole
,
R. J.
,
2011
, “
Laminar Natural Convection of Power-Law Fluids in a Square Enclosure With Differentially Heated Side Walls Subjected to Constant Temperatures
,”
J. Non-Newtonian Fluid Mech.
,
166
, pp.
1049
1063
.10.1016/j.jnnfm.2011.06.003
10.
Turan
,
O.
,
Sachdeva
,
A.
,
Poole
,
R. J.
, and
Chakraborty
,
N.
,
2012
, “
Laminar Natural Convection of Power-Law Fluids in a Square Enclosure With Differentially Heated Sidewalls Subjected to Constant Wall Heat Flux
,”
ASME J. Heat Transfer
,
134
, p.
122504
.10.1115/1.4007123
11.
Khezzar
,
L.
,
Siginer
,
D.
, and
Vinogradov
,
I.
,
2012
, “
Natural Convection of Power Law Fluids in Inclined Cavities
,”
Int. J. Therm. Sci.
,
53
, pp.
8
17
.10.1016/j.ijthermalsci.2011.10.020
12.
Thomas
,
P. D.
, and
Middlecoff
,
J. F.
,
1980
, “
Direct Control of the Grid Point Distribution in Meshes Generated by Elliptic Equations
,”
AIAA J.
,
18
, pp.
652
656
.10.2514/3.50801
13.
Cho
,
C. C.
,
Chen
,
C. L.
, and
Chen
,
C. K.
,
2012
, “
Electrokinetically-Driven Non-Newtonian Fluid Flow in Rough Microchannel With Complex-Wavy Surface
,”
J. Non-Newtonian Fluid Mech.
,
173–174
, pp.
13
20
.10.1016/j.jnnfm.2012.01.012
14.
Cho
,
C. C.
,
Chen
,
C. L.
, and
Chen
,
C. K.
,
2012
, “
Mixing of Non-Newtonian Fluids in Wavy Serpentine Microchannel Using Electrokinetically-Driven Flow
,”
Electrophoresis
,
33
, pp.
743
750
.10.1002/elps.201100496
15.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.