In this paper, laminar forced convection and entropy generation in a counter flow microchannel heat exchanger (CFMCHE) with two different working fluids in hot and cold channels, i.e., pure water and Al2O3–water nanofluid are investigated numerically using a three-dimensional conjugate heat transfer model. The temperature distribution, effectiveness, pumping power and performance index for various volume fractions between 0.01–0.04, three nanoparticles diameters, i.e., 29, 38.4, and 47 nm and a range of Reynolds number from 120 to 480 are given and discussed. According to second law of thermodynamics and entropy generation rate in the CFMCHE, the analysis of optimal volume fraction, particles size, Reynolds number as well as optimal placement of using nanoparticles in hot/cold channels is carried out. It is found that decreasing particles size and increasing nanoparticles concentration lead to higher effectiveness and pumping power as well as lower temperature in the solid phase of CFMCHE. Furthermore, the frictional contribution of entropy increases with decreasing particles size and increasing volume fractions while the trends for heat transfer contribution of entropy are reverse. Total entropy decreases as particles size decreases and volume fraction increases hence the maximum performance occurred at lower particles sizes and higher volume fractions. The Reynolds number has significant effect on performance of system and with decreasing it the effectiveness increases and heat transfer contribution of entropy decreases while the pumping power and frictional contribution of entropy decrease. Finally, it is seen that the capability of heat transfer of Al2O3–water nanofluids is higher when they are under heating conditions because the effectiveness of CFMCHE is higher when nanoparticles are used in cold channels.

References

1.
Heris
,
S. Z.
,
Etemad
,
S. G.
, and
Esfahany
,
M. N.
,
2006
, “
Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer
,”
Int. Commun. Heat Mass Transfer
,
33
, pp.
529
535
.10.1016/j.icheatmasstransfer.2006.01.005
2.
Heris
,
S. Z.
,
Etemad
,
S. G.
,
Esfahany
,
M. N.
,
2007
, “
Experimental Investigation of Convective Heat Transfer of
Al2O3
/Water Nanofluid in Circular Tube
,”
Int. J. Heat Fluid Flow
,
28
(
2
), pp.
203
210
.10.1016/j.ijheatfluidflow.2006.05.001
3.
Mohammed
,
H. A.
,
Bhaskaran
,
G.
,
Shuaib
,
N. H.
, and
Abu-Mulaweh
,
H. I.
,
2011
, “
Influence of Nanofluids on Parallel Flow Square Microchannel Heat Exchanger Performance
,”
Int. Commun. Heat Mass Transfer
,
38
(
1
), pp.
1
9
.10.1016/j.icheatmasstransfer.2010.09.007
4.
Seyf
,
H. R.
, and
Mohammadian
,
S. K.
,
2011
, “
Thermal and Hydraulic Performance of Counterflow Microchannel Heat Exchangers With and Without Nanofluids
,”
ASME J. Heat Transfer
,
133
,
p. 081801
.10.1115/1.4003553
5.
Li
,
J.
, and
Kleinstreuer
,
C.
,
2008
, “
Thermal Performance of Nanofluid Flow in Microchannels
,”
Int. J. Heat Fluid Flow
,
29
, pp.
1221
1232
.10.1016/j.ijheatfluidflow.2008.01.005
6.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
,
2009
, “
Heat Transfer Enhancement and Pressure Drop Characteristics of TiO2–Water Nanofluid in a Double-Tube Counter Flow Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
52
, pp.
2059
2067
.10.1016/j.ijheatmasstransfer.2008.10.023
7.
Seyf
,
H. R.
, and
Feizbakhshi
,
M.
,
2012
, “
Computational Analysis of Nanofluid Effects on Convective Heat Transfer Enhancement of Micro-Pin-Fin Heat Sinks
,”
Int. J. Therm. Sci.
,
58
, pp.
168
179
.10.1016/j.ijthermalsci.2012.02.018
8.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
, pp.
567
574
.10.1115/1.1571080
9.
Nguyen
,
C. T.
,
Roy
,
G.
,
Gauthier
,
C.
, and
Galanis
,
N.
,
2007
, “
Heat Transfer Enhancement Using
Al2O3
–Water Nanofluid for Electronic Liquid Cooling System
,”
Appl. Therm. Eng.
,
28
, pp.
1501
1506
.10.1016/j.applthermaleng.2006.09.028
10.
He
,
Y.
,
Jin
,
Y.
,
Chen
,
H.
,
Ding
,
Y.
,
Cang
,
D.
, and
Lu
,
H.
,
2007
, “
Heat Transfer and Flow Behavior of Aqueous Suspensions of TiO2 Nanoparticles (Nanofluids) Flowing Upward Through a Vertical Pipe
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2272
2281
.10.1016/j.ijheatmasstransfer.2006.10.024
11.
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2009
, “
Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region
,”
Int. J. Heat Mass Transfer
,
52
(
9–10)
,
pp.
2189
2195
.10.1016/j.ijheatmasstransfer.2007.11.063
12.
Kalteh
,
M.
,
Abbassi
A.
,
Saffar-Avval
,
M.
,
Frijns
,
A.
,
Darhuber
,
A.
, and
Harting
,
J.
,
2012
, “
Experimental and Numerical Investigation of Nanofluid Forced Convection Inside a Wide Microchannel Heat Sink
,”
Appl. Therm. Eng.
,
36
,
260
268
.10.1016/j.applthermaleng.2011.10.023
13.
Kumar
,
D. H.
,
Patel
,
H. E.
,
Kumar
,
V. R.
,
Sundararajan
,
T.
,
Pradeep
,
T.
, and
Das
,
S. K.
,
2004
, “
Model for Heat Conduction in Nanofluids
,”
Phys. Rev. Lett.
,
93
,
p. 144301
.10.1103/PhysRevLett.93.144301
14.
Wang
,
X. Q.
,
Mujumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
, pp.
1
19
.10.1016/j.ijthermalsci.2006.06.010
15.
Godson
,
L.
,
Raja
,
B.
,
Lal
,
D.
, and
Wongwises
,
S.
,
2010
, “
Enhancement of Heat Transfer Using Nanofluids-An Overview
,”
Renewable Sustainable Energy Rev.
,
14
, pp.
629
641
.10.1016/j.rser.2009.10.004
16.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlations of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
, pp.
3701
3707
.10.1016/S0017-9310(99)00369-5
17.
Hasan
,
M. I.
,
Rageb
,
A. A.
,
Yaghoubi
,
M.
, and
Homayoni
,
H.
,
2009
, “
Influence of Channel Geometry on the Performance of a Counter Flow Microchannel Heat Exchanger
,”
Int. J. Therm. Sci.
,
48
(
8
), pp.
1607
1618
.10.1016/j.ijthermalsci.2009.01.004
18.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2004
, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
,
6
, pp.
577
588
.10.1007/s11051-004-3170-5
19.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2005
, “
Laminar Nanofluid Flow in Micro Heat-Sinks
,”
Int. J. Heat Mass Transfer
,
48
, pp.
2652
2661
.10.1016/j.ijheatmasstransfer.2005.01.029
20.
Li
,
J.
,
2008
, “
Computational Analysis of Nanofluid Flow in Microchannels With Applications to Micro-Heat Sinks and Bio- MEMS
,” Ph.D. thesis, MAE department, NCSU, Raleigh, NC.
21.
Foli
,
K.
,
Okaba
,
T.
,
Olhofer
,
M.
,
Jon
,
Y.
, and
Sendhoff
,
B.
,
2006
, “
Optimization of Micro Heat Exchangers: CFD
,
Analytical Approach and Multi-Objective Evolutionary Algorithms
,”
Int. J. Heat Mass Transfer
,
49
, pp.
1090
1099
.10.1016/j.ijheatmasstransfer.2005.08.032
22.
Wei
,
X.
,
Joshi
,
Y.
,
Patterson
,
M.
,
2007
, “
Experimental and Numerical Study of Stacked Microchannel Heat Sink for Liquid Cooling of Microelectronic Devices
,”
ASME J. Heat Transfer
,
129
, pp.
1432
1444
.10.1115/1.2754781
23.
Li
,
J.
, and
Kleinstreuer
,
C.
,
2009
, “
Microfluidics Analysis of Nanoparticle Mixing in a Microchannel System
,”
Microfluid. Nanofluid.
,
6
, pp.
661
668
.10.1007/s10404-008-0341-1
24.
Li
,
J.
, and
Kleinstreuer
,
C.
,
2010
, “
Entropy Generation Analysis for Nanofluid Flow in Microchannels
,”
ASME J. Heat Transfer
,
132
, p.
122401
.10.1115/1.4002395
25.
Ghasemi
,
B.
,
Aminossadati
,
S. M.
,
2010
, “
Brownian Motion of Nanoparticles in a Triangular Enclosure With Natural Convection
,”
Int. J. Therm. Sci.
,
49
(
6
), pp.
931
940
.10.1016/j.ijthermalsci.2009.12.017
26.
Lelea
,
D.
,
2011
, “
The Performance Evaluation of Al2O3/Water Nanofluid Flow and Heat Transfer in Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
54
, pp.
3891
3899
.10.1016/j.ijheatmasstransfer.2011.04.038
27.
Lee
,
J.
, and
Mudawar
,
I.
,
2007
, “
Assessment of the Effectiveness of Nanofluids for Single Phase and Two-Phase Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
50
,
452
463
.10.1016/j.ijheatmasstransfer.2006.08.001
28.
Seyf
,
H. R.
,
Nikaeen
,
B.
,
2012
, “
Analysis of Brownian Motion and Particle Size Effects on the Thermal Behavior and Cooling Performance of Microchannel Heat Sinks
,”
Int. J. Therm. Sci.
,
58
, pp.
36
44
.10.1016/j.ijthermalsci.2012.02.022
29.
Shalchi-Tabrizi
,
A.
, and
Seyf
,
H. R.
,
2012
, “
Analysis of Entropy Generation and Convective Heat Transfer of
Al2O3
Nanofluid Flow in a Tangential Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
55
(
15–16)
,
pp. 4366–4
375
.10.1016/j.ijheatmasstransfer.2012.04.005
30.
Keblinski
,
P.
,
Eastman
,
J. A.
, and
Cahill
,
D.
,
2005
, “
Nanofluids for Thermal Transport
,”
Mater. Today
,
8
(
23
), pp.
36
44
.10.1016/S1369-7021(05)70936-6
31.
Wang
,
B. X.
,
Zhou
,
L. P.
,
Peng
,
X. F.
,
2003
, “
A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid With Suspension of Nanoparticles
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2665
2672
.10.1016/S0017-9310(03)00016-4
32.
Russel
,
W. B.
,
Saville
,
D. A.
, and
Schowalter
,
W. R.
,
1989
,
Colloidal Dispersion
,
Cambridge University Press
,
Cambridge
.
33.
Hunter
,
R.
,
2001
,
Foundations of Colloid Science
,
Oxford University Press
,
New York
.
34.
Namburu
,
P. K.
,
Kulkarni
,
D. P.
,
Dandekar
,
A.
, and
Das
,
D. K.
,
2007
, “
Experimental Investigation of Viscosity and Specific Heat of Silicon Dioxide Nanofluids
,”
Micro Nano Lett.
,
2
(
3
), pp.
67
71
.10.1049/mnl:20070037
You do not currently have access to this content.