In recent years, nanofluids have attracted attention as a new generation of heat transfer fluids in building heating, heat exchangers, plants, and automotive cooling applications because of their excellent thermal performance. Various benefits of the application of nanofluids include improved heat transfer, heat transfer system size reduction, minimal clogging, microchannel cooling, and miniaturization of systems. In this paper, a study of steady, laminar, natural convection boundary-layer flow adjacent to a vertical cylinder embedded in a thermally stratified nanofluid-saturated non-Darcy porous medium is investigated. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis, and a generalized porous media model, which includes inertia and boundary effects, is employed. The cylinder surface is maintained at a constant nanoparticles volume fraction, and the wall temperature is assumed to vary with the vertical distance according to the power law form. The resulting governing equations are nondimensionalized and transformed into a nonsimilar form and then solved by Keller box method. A comparison is made with the available results in the literature, and our results are in very good agreement with the known results. A parametric study of the physical parameters is made, and a representative set of numerical results for the velocity, temperature, and volume fraction, as well as local shear stress and local Nusselt and Sherwood numbers, are presented graphically. The salient features of the results are analyzed and discussed. The results indicate that, when the buoyancy ratio or modified Grashof number increases, all of the local shear stress, local Nusselt number, and the local Sherwood number enhance while the opposite behaviors are predicted when the thermophoresis parameter increases. Moreover, increasing the value of the surface curvature parameter leads to increases in all of the local shear stress and the local Nusselt and Sherwood numbers while the opposite behaviors are obtained when either of the thermal stratification parameter or the boundary effect parameter increases.
Skip Nav Destination
Article navigation
Research-Article
Non-Darcy Natural Convection From a Vertical Cylinder Embedded in a Thermally Stratified and Nanofluid-Saturated Porous Media
A. M. Rashad,
A. M. Rashad
Department of Mathematics,
Faculty of Science,
Aswan,
Faculty of Science,
Aswan University
,Aswan,
Egypt
Search for other works by this author on:
S. Abbasbandy,
S. Abbasbandy
1
Department of Mathematics,
Science and Research Branch,
e-mail: abbasbandy@yahoo.com
Science and Research Branch,
Islamic Azad University
,Tehran
, Iran
e-mail: abbasbandy@yahoo.com
1Corresponding author.
Search for other works by this author on:
Ali J. Chamkha
Ali J. Chamkha
Manufacturing Engineering Department,
The Public Authority for Applied Education and Training
,Shuweikh 70654
, Kuwait
Search for other works by this author on:
A. M. Rashad
Department of Mathematics,
Faculty of Science,
Aswan,
Faculty of Science,
Aswan University
,Aswan,
Egypt
S. Abbasbandy
Department of Mathematics,
Science and Research Branch,
e-mail: abbasbandy@yahoo.com
Science and Research Branch,
Islamic Azad University
,Tehran
, Iran
e-mail: abbasbandy@yahoo.com
Ali J. Chamkha
Manufacturing Engineering Department,
The Public Authority for Applied Education and Training
,Shuweikh 70654
, Kuwait
1Corresponding author.
Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received February 13, 2013; final manuscript received June 18, 2013; published online November 12, 2013. Assoc. Editor: Andrey Kuznetsov.
J. Heat Transfer. Feb 2014, 136(2): 022503 (9 pages)
Published Online: November 12, 2013
Article history
Received:
February 13, 2013
Revision Received:
June 18, 2013
Citation
Rashad, A. M., Abbasbandy, S., and Chamkha, A. J. (November 12, 2013). "Non-Darcy Natural Convection From a Vertical Cylinder Embedded in a Thermally Stratified and Nanofluid-Saturated Porous Media." ASME. J. Heat Transfer. February 2014; 136(2): 022503. https://doi.org/10.1115/1.4025559
Download citation file:
Get Email Alerts
Cited By
On Prof. Roop Mahajan's 80th Birthday
J. Heat Mass Transfer
Thermal Hydraulic Performance and Characteristics of a Microchannel Heat Exchanger: Experimental and Numerical Investigations
J. Heat Mass Transfer (February 2025)
Related Articles
Free Convection Boundary Layer Flow Past a Horizontal Flat Plate Embedded in a Porous Medium Filled With a Nanofluid
J. Heat Transfer (September,2011)
Natural Convective Boundary-Layer Flow Over a Vertical Cylinder Embedded in a Porous Medium Saturated With a Nanofluid
J. Nanotechnol. Eng. Med (August,2012)
Related Proceedings Papers
Related Chapters
Finite Element Solution of Natural Convection Flow of a Nanofluid along a Vertical Flat Plate with Streamwise Sinusoidal Surface Temperature
International Conference on Computer and Electrical Engineering 4th (ICCEE 2011)
Heat Transfer Enhancement by Using Nanofluids in Laminar Forced Convection Flows Considering Variable Properties
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)
Heat Transfer Characteristics of CNT-Heat Transfer Oil Nanofluid Flow Inside Helically Coiled Tubes under Uniform Wall Tempoerature Condition
International Conference on Computer and Electrical Engineering 4th (ICCEE 2011)