This study examines experimentally the cooling performance of narrow impingement channels as could be cast-in in modern turbine airfoils. Full surface heat transfer coefficients are evaluated for the target plate and the sidewalls of the channels using the transient liquid crystal technique. Several narrow impingement channel geometries, consisting of a single row of five cooling holes, have been investigated composing a test matrix of nine different models. The experimental data are analyzed by means of various post-processing procedures aiming to clarify and quantify the effect of cooling hole offset position from the channel centerline on the local and average heat transfer coefficients and over a range of Reynolds numbers (11,100–86,000). The results indicated a noticeable effect of the jet pattern on the distribution of convection coefficients as well as similarities with conventional multi-jet impingement cooling systems.

References

1.
Lutum
,
E.
,
Semmler
,
K.
, and
von Wolfersdorf
,
J.
,
2002
, “
Cooled Blade for a Gas Turbine
,” U.S. Patent No. 6,397,118 B2.
2.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement–A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.10.1615/HeatTransRes.v42.i2.30
3.
Gillespie
,
D. R. H.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Kohler
,
S. T.
,
1998
, “
Full Surface Local Heat Transfer Coefficient Measurements in a Model of an Integrally Cast Impingement Cooling Configurations
,”
ASME J. Turbomach.
,
120
, pp.
92
99
.10.1115/1.2841394
4.
Chambers
,
A. C.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
,
2005
, “
The Effect of Initial Crossflow on the Cooling Performance of a Narrow Impingement Channel
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
358
365
.10.1115/1.1800493
5.
Chambers
,
C. A.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Kingston
,
R.
,
2010
, “
Enhancement of Impingement Cooling in a High Crossflow Channel Using Shaped Impingement Cooling Holes
,”
ASME J. Turbomach.
,
132
, pp.
021021
021028
.10.1115/1.3140282
6.
Ricklick
,
M.
,
Claretti
,
R.
, and
Kapat
,
J. S.
,
2010
, “
Channel Height and Jet Spacing Effect on Heat Transfer and Uniformity Coefficient on an Inline Row Impingement Channel
,”
Proceedings of ASME Turbo Expo 2010
, Glasgow, UK.
7.
Ricklick
,
M.
,
Kapat
,
J. S.
, and
Heidmann
,
J.
,
2010
, “
Sidewall Effects on Heat Transfer Coefficient
,”
J. Thermophys. Heat Transfer
,
24
(
1
), pp.
123
132
.10.2514/1.44166
8.
Gillespie
,
D. R. H.
,
Wang
,
Z.
, and
Ireland
,
P. T.
,
1995
, “
Heating Element
,” UK patent application PCT/G96/2017.
9.
Terzis
,
A.
,
von Wolfersdorf
,
J.
,
Wagner
,
G.
,
Weigand
,
B.
, and
Ott
,
P.
,
2012
, “
Influence of Thermocouple Thermal Inertia in Impingement Heat Tranfer Experiments Using Transient Techniques
,”
XXI Biannual Symposium on Measuring Techniques in Turbomachinery
, Mar. 22–23, 2012, Valencia, Spain.
10.
Park
,
J.
,
Goodro
,
M.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2007
, “
Separate Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,”
ASME J. Turbomach.
,
129
, pp.
269
280
.10.1115/1.2437774
11.
Ireland
,
P. T.
,
Neely
,
A. J.
,
Gillespie
,
D. H. R.
, and
Robertson
,
A. J.
,
1999
, “
Turbulent Heat Transfer Measurements Using Liquid Crystals
,”
Int. J. Heat Fluid Flow
,
20
, pp.
355
367
.10.1016/S0142-727X(99)00030-2
12.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2006
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
, Hoboken, NJ.
13.
Poser
,
R.
, and
von Wolfersdorf
,
J.
,
2011
, “
Liquid Crystal Thermography for Transient Heat Transfer Measurements in Complex Internal Cooling Systems
,”
Heat Transfer Res.
,
42
(
2
), pp.
181
197
.10.1615/HeatTransRes.v42.i2.60
14.
Vogel
,
G.
, and
Bölcs
,
A.
,
2001
, “
A Novel Digital Image Processing System for the Transient Liquid Crystal Technique Applied for Heat Transfer and Film Cooling Measurements
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
297
304
.10.1111/j.1749-6632.2001.tb05863.x
15.
Terzis
,
A.
,
Wagner
,
G.
, and
Ott
,
P.
,
2012
, “
Hole Staggering Effect on the Cooling Performance of Narrow Impingement Channels
,” ASME, GT2012-68323, TurboExpo 2012, June 11–15, Copenhagen.
16.
Kingsley-Rowe
,
J. R.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2005
, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystals: Lateral-Conduction Error
,”
Int. J. Heat Fluid Flow
,
26
(
2
), pp.
256
263
.10.1016/j.ijheatfluidflow.2004.08.011
17.
Ireland
,
P. T.
, and
Jones
,
T. V.
,
2000
, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
,
11
, pp.
969
986
.10.1088/0957-0233/11/7/313
18.
Kwak
,
J. S.
,
2008
, “
Comparison of Analytical and Superposition Solutions of the Transient Liquid Crystal Technique
,”
J. Thermophys. Heat Transfer
,
22
(
2
), pp.
290
295
.10.2514/1.34274
19.
Terzis
,
A.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Ott
,
P.
,
2012
, “
Thermocouple Thermal Inertia Effects on Impingement Heat Transfer Experiments Using the Transient Liquid Crystal Technique
,”
Meas. Sci. Technol.
,
23
(
11
), p.
115303
.10.1088/0957-0233/23/11/115303
20.
Moffat
,
R. J.
,
1998
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Thermal Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
21.
Yan
,
Y.
, and
Owen
,
J. M.
,
2002
, “
Uncertainties in Transient Heat Transfer Measurements With Liquid Crystal
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
29
35
.10.1016/S0142-727X(01)00125-4
22.
Ireland
,
P. T.
,
1987
, “
Internal Cooling of Turbine Blades
,” D. Phil. Thesis, Department of Engineering Science, Oxford University, Oxford, UK.
23.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of the Heat Transfer Data For Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.10.1016/0142-727X(92)90017-4
24.
Zhou
,
D. W.
, and
Ma
,
C. F.
,
2006
, “
Radial Heat Transfer Behavior of Impinging Submerged Circular Jets
,”
Int. J. Heat Mass Transfer
,
49
, pp.
1719
1722
.10.1016/j.ijheatmasstransfer.2005.10.021
25.
Gorin
,
A.
,
2011
, “
On Assymptotic Laws and Transfer Processes Enhancement in Complex Turbulent Flows,
World Acad. Sci., Eng
.,
Technol.
,
81
, pp.
700
706
.
26.
Baughn
,
J. W.
, and
Shimizu
,
S.
,
1989
, “
Heat Transfer Measurements From a Surface With Uniform Heat Flux and an Impinging Jet
,”
ASME J. Heat Transfer
,
111
, pp.
1096
1098
.10.1115/1.3250776
27.
Caggese
,
O.
,
Gnaegi
,
G.
,
Hannema
,
G.
,
Terzis
,
A.
, and
Ott
,
P.
,
2013
, “
Experimental and Numerical Investigation of a Fully Confined Impingement Round Jet
,”
Int. J. Heat Mass Transfer
,
65
, pp.
873
882
.10.1016/j.ijheatmasstransfer.2013.06.043
28.
Bouchez
,
J.-P.
, and
Goldstein
,
J.
,
1975
, “
Impingement Cooling From a Circular Jet in a Crossflow
,”
Int. J. Heat Fluid Flow
,
18
, pp.
719
730
.
29.
Fechter
,
S.
,
Terzis
,
A.
,
Ott
,
P.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
, and
Cochet
,
M.
,
2013
, “
Experimental and Numerical Investigation of Narrow Impingement Cooling Channels
,”
Int. J. Heat Mass Transfer
,
67
, pp.
1208
1219
.10.1016/j.ijheatmasstransfer.2013.09.003
30.
Son
,
C. M.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
,
2001
, “
Heat Transfer and Flow Characteristics of an Engine Representative Impingement Cooling System
,”
ASME J. Turbomach.
,
123
, pp.
154
160
.10.1115/1.1328087
31.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions For Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
337
342
.10.1115/1.3244463
32.
Van Treuren
,
K. W.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Jones
,
T. V.
,
1994
, “
Detailed Measurements of Local Heat Transfer Coefficient and Adiabatic Wall Temperature Beneath an Array of Impinging Jets
,”
ASME J. Turbomach.
,
116
(
3
), pp.
336
374
.10.1115/1.2929423
33.
Huang
,
Y.
,
Ekkad
,
S.
V
.
, and
Han
,
J.-C.
,
1998
, “
Detailed Heat Transfer Distributions Under an Array of Orthogonal Impinging Jets
,”
J. Thermophys. Heat Transfer
,
12
(
1
), pp.
73
78
.10.2514/2.6304
34.
El-Gabry
,
L. A.
, and
Kaminski
,
D. A.
,
2005
, “
Experimental Investigation of Local Heat Transfer Distribution on Smooth and Roughened Surfaces Under an Array of Angled Jets
,”
ASME J. Turbomach.
,
127
(
3
), pp.
532
544
.10.1115/1.1861918
35.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2010
, “
Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets
,”
ASME J. Heat Transfer
,
132
, p. 092201.10.1115/1.4001633
You do not currently have access to this content.