This paper is devoted to introduce a numerical simulation using the differential transformation method (DTM) with a theoretical study for the effect of viscous dissipation on the steady flow with heat transfer of Newtonian fluid towards a permeable stretching surface embedded in a porous medium with a second order slip. The governing nonlinear partial differential equations are converted into a system of nonlinear ordinary differential equations (ODEs) by using similarity variables. The resulting ODEs are successfully solved numerically with the help of DTM. Graphic results are shown for nondimensional velocities and temperatures. The effects of the porous parameter, the suction (injection) parameter, Eckert number, first and second order velocity slip parameters and the Prandtl number on the flow and temperature profiles are given. Moreover, the local skin-friction and Nusselt numbers are presented. Comparison of numerical results is made with the earlier published results under limiting cases.

References

1.
Crane
,
L. J.
,
1970
, “
Flow Past a Stretching Plate
,”
Z. Angew. Math. Phys.
,
21
, pp.
645
647
.10.1007/BF01587695
2.
Gupta
,
P. S.
, and
Gupta
,
A. S.
,
1977
, “
Heat and Mass Transfer on a Stretching Sheet With Suction and Blowing
,”
Can. J. Chem. Eng.
,
55
, pp.
744
746
.10.1002/cjce.5450550619
3.
Chakrabarti
,
A.
, and
Gupta
,
A. S.
,
1977
, “
Hydromagnetic Flow and Heat Transfer Over a Stretching Sheet
,”
Q. Appl. Math.
,
37
, pp.
73
78
.
4.
Carragher
,
P.
, and
Crane
,
L. J.
,
1982
, “
Heat Transfer on a Continuous Stretching Sheet
,”
ZAMM
,
82
, pp.
964
965
.
5.
Grubka
,
L. J.
, and
Bobba
,
K. M.
,
1985
, “
Heat Transfer Characteristics of a Continuous, Stretching Surface With Variable Temperature
,”
ASME J. Heat Transfer
,
107
, pp.
248
250
.10.1115/1.3247387
6.
Ali
,
M. E.
,
1994
, “
Heat Transfer Characteristics of a Continuous Stretching Surface
,”
Wärme-Stoffübertrag
,
29
, pp.
227
234
.10.1007/BF01539754
7.
Cortell
,
R.
,
2007
, “
Viscous Flow and Heat Transfer Over a Nonlinearly Stretching Sheet
,”
Appl. Math. Comput.
,
184
, pp.
864
873
.10.1016/j.amc.2006.06.077
8.
Cottin-Bizonne
,
C.
,
Cross
,
B.
,
Steinberger
,
A.
, and
Charlaix
,
E.
,
2005
, “
Boundary Slip on Smooth Hydrophobic Surfaces: Intrinsic Effects and Possible Artifacts
,”
Phys. Rev. Lett.
,
94
, pp.
056
102
.10.1103/PhysRevLett.94.056102
9.
Navier
,
C. L. H.
,
1823
, “
Mmoire sur les Lois du Mouvement des Fluids
,”
Mem. Acad. Sci. Inst. Fr.
,
6
, pp.
389
416
.
10.
Thompson
,
P. A.
, and
Troian
,
S. M.
,
1997
, “
A General Boundary Condition for Liquid Flow at Solid Surfaces
,”
Nature
,
389
, pp.
360
362
.10.1038/39475
11.
Turkyilmazoglu
,
M.
,
2011
, “
Multiple Solutions of Heat and Mass Transfer of MHD Slip Flow for the Viscoelastic Fluid Over a Stretching Sheet
,”
Int. J. Therm. Sci.
,
50
(
11
), pp.
2264
2276
.10.1016/j.ijthermalsci.2011.05.014
12.
Megahed
,
A. M.
,
2012
, “
Variable Viscosity and Slip Velocity Effects on the Flow and Heat Transfer of a Power-Law Fluid Over a Non-Linearly Stretching Surface With Heat Flux and Thermal Radiation
,”
Rheol. Acta
,
51
, pp.
841
847
.10.1007/s00397-012-0644-8
13.
Zhou
,
J. K.
,
1986
,
Differential Transformation and Its Application for Electrical Circuits
,
Huazhong University Press
,
Wuhan, China
.
14.
Borhanifar
,
A.
, and
Abazari
,
R.
,
2010
, “
Numerical Study of Nonlinear Schrödinger and Coupled Schrödinger Equations by Differential Transformation Method
,”
Opt. Commun.
,
283
, pp.
2026
2031
.10.1016/j.optcom.2010.01.046
15.
Abazari
,
R.
, and
Borhanifar
,
A.
,
2010
, “
Numerical Study of the Solution of the Burger and Coupled Burger's Equations by a Differential Transformation Method
,”
Comput. Math. Appl.
,
59
, pp.
2711
2722
.10.1016/j.camwa.2010.01.039
16.
Bildik
,
N.
, and
Konuralp
,
A.
,
2006
, “
The Use of Variational Iteration Method, Differential Transform Method and Adomian Decomposition Method for Solving Different Type of Nonlinear Partial Differential Equations
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
7
(
1
), pp.
65
70
.10.1515/IJNSNS.2006.7.1.65
17.
Ozdemir
,
O.
, and
Kaya
,
M. O.
,
2006
, “
Flapwise Bending Vibration Analysis of a Rotating Tapered Cantilever Bernoulli-Euler Beam by Differential Transform Method
,”
J. Sound Vib.
,
289
, pp.
413
420
.10.1016/j.jsv.2005.01.055
18.
Khader
,
M. M.
,
2011
, “
On the Numerical Solutions for the Fractional Diffusion Equation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
, pp.
2535
2542
.10.1016/j.cnsns.2010.09.007
19.
Khader
,
M. M.
, and
Megahed
,
A. M.
,
2013
, “
Numerical Simulation Using the Finite Difference Method for the Flow and Heat Transfer in a Thin Liquid Film Over an Unsteady Stretching Sheet in a Saturated Porous Medium in the Presence of Thermal Radiation
,”
J. King Saud Univ., Eng. Sci.
,
25
, pp.
29
34
.
20.
Sweilam
,
N. H.
,
Khader
,
M. M.
, and
Nagy
,
A. M.
,
2011
, “
Numerical Solution of Two-Sided Space Fractional Wave Equation Using Finite Difference Method
,”
Comput. Appl. Math.
,
235
, pp.
2832
2841
.10.1016/j.cam.2010.12.002
21.
Khader
,
M. M.
,
Sweilam
,
N. H.
, and
Mahdy
,
A. M. S.
,
2013
, “
Numerical Study for the Fractional Differential Equations Generated by Optimization Problem Using Chebyshev Collocation Method and FDM
,”
Appl. Math. Inf. Sci.
,
7
(
5
), pp.
2011
2018
.10.12785/amis/070541
22.
Arikoglu
,
A.
, and
Ozkol
, I
.
,
2008
, “
Solutions of Integral and Integro-Differential Equation Systems by Using Differential Transform Method
,”
Comput. Math. Appl.
,
56
, pp.
2411
2417
.10.1016/j.camwa.2008.05.017
23.
Fang
,
T.
,
Yao
,
S.
,
Zhang
,
J.
, and
Aziz
,
A.
,
2010
, “
Viscous Flow Over a Shrinking Sheet With a Second Order Slip Flow Model
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
, pp.
1831
1842
.10.1016/j.cnsns.2009.07.017
24.
Wu
,
L.
,
2008
, “
A Slip Model for Rarefied Gas Flows at Arbitrary Knudsen Number
,”
Appl. Phys. Lett.
,
93
(
25
), p.
253103
.10.1063/1.3052923
25.
Ingham
,
D. B.
,
Pop
, I
.
, and
Cheng
,
P.
,
1990
, “
Combined Free and Forced Convection in a Porous Medium Between Two Vertical Walls With Viscous Dissipation
,”
Transp. Porous Media
,
5
, pp.
381
398
.10.1007/BF01141992
26.
Rees
,
D.
, and
Lage
,
J. L.
,
1997
, “
The Effect of Thermal Stratification of Natural Convection in a Vertical Porous Insulation Layer
,”
Int. J. Heat Mass Transfer
,
40
, pp.
111
121
.10.1016/S0017-9310(96)00060-9
27.
Beckett
,
P. M.
,
1980
, “
Combined Natural and Forced Convection Between Parallel Vertical Walls
,”
SIAM J. Appl. Math.
,
39
, pp.
372
384
.10.1137/0139031
28.
Beckett
,
P. M.
, and
Friend
, I
. E.
,
1984
, “
Combined Natural and Forced Convection Between Parallel Walls: Developing Flow at Higher Rayleigh Numbers
,”
Int. J. Heat Mass Transfer
,
27
, pp.
611
621
.10.1016/0017-9310(84)90033-4
29.
Chen
,
C. H.
,
1998
, “
Laminar Mixed Convection Adjacent to Vertical, Continuously Stretching Sheets
,”
Heat Mass Transfer
,
33
,
471
476
.10.1007/s002310050217
30.
Sharma
,
R.
,
2012
, “
Effect of Viscous Dissipation and Heat Source on Unsteady Boundary Layer Flow and Heat Transfer Past a Stretching Surface Embedded in a Porous Medium Using Element Free Galerkin Method
,”
Appl. Math. Comput.
,
219
, pp.
976
987
.10.1016/j.amc.2012.07.002
You do not currently have access to this content.