Coal ash inevitably forms deposits as combustion residue on the walls and heat transfer surfaces of coal-fired boilers. Ash deposits decrease the boiler efficiency, reduce the generating capacity, and cause unscheduled outages. The radiative heat transfer is the major heat transfer mechanism in utility boilers; thus, the ash deposit emissivity is critical to boiler efficiency and safety. This paper presents a radiative transfer model to predict the spectral emissivities of coal ash deposits. The model includes the effects of the microstructure, chemical composition, and temperature. Typical ash deposit microstructures are generated using diffusion-limited aggregation (DLA). The radiative properties are then calculated using the generalized multiparticle Mie-solution (GMM). The combined GMM and DLA model predicts spectral emissivity better than the original Mie theory and Tien's dependent scattering theory with the average relative difference between predicted results and experimental data decreasing from 17.8% to 9.1% for sample 1 and from 18.6% to 4.2% for sample 2. Maxwell-Garnett (MG) effective medium theory is used to calculate the ash deposit optical constants based on the chemical compositions to include the effect of chemical composition. Increasing temperatures increase the particle diameters and particle volume fractions and, thus, the spectral emissivities. The spectral emissivity ultimately remains constant and less than one. The homogeneous slab model gives the upper limit of the ash deposit spectral emissivity.

References

1.
Bryers
,
R. W.
,
1996
, “
Fireside Slagging, Fouling, and High-Temperature Corrosion of Heat-Transfer Surface Due to Impurities in Steam-Raising Fuels
,”
Prog. Energy Combust. Sci.
,
22
(
1
), pp.
29
120
.10.1016/0360-1285(95)00012-7
2.
Wall
,
T. F.
,
Bhattacharya
,
S. P.
,
Zhang
,
D. K.
,
Gupta
,
R. P.
, and
He
,
X.
,
1993
, “
The Properties and Thermal Effects of Ash Deposits in Coal-Fired Furnaces
,”
Prog. Energy Combust. Sci.
,
19
(
6
), pp.
487
504
.10.1016/0360-1285(93)90002-V
3.
Baxter
,
L. L.
, and
Desollar
,
R. W.
,
1993
, “
A Mechanistic Description of Ash Deposition During Pulverized Coal Combustion-Predictions Compared With Observations
,”
Fuel
,
72
(
10
), pp.
1411
1418
.10.1016/0016-2361(93)90417-Z
4.
Liu
,
D.
,
Duan
,
Y. Y.
, and
Yang
,
Z.
,
2012
, “
Effects of Participating Media on the Time-Resolved Infrared Measurements of Wall Temperature in a Coal-Fired Combustor
,”
Exp. Therm Fluid Sci.
,
39
, pp.
90
97
.10.1016/j.expthermflusci.2012.01.012
5.
Liu
,
D.
,
Duan
,
Y. Y.
, and
Yang
,
Z.
,
2013
, “
Effects of Wake Dynamics on Infrared Measurements of Particle Cloud Temperatures in the Superheater Pendant Region of Utility Boilers
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
1076
1081
.10.1016/j.applthermaleng.2012.10.053
6.
Liu
,
D.
,
Duan
,
Y. Y.
, and
Yang
,
Z.
,
2013
, “
Integrated Effective Emissivity Computation for Non-Isothermal Non-Axisymmetric Cavities
,”
Chin. Opt. Lett.
,
11
(
2
), p.
022001
.10.3788/COL201311.022001
7.
Liu
,
D.
,
Duan
,
Y. Y.
, and
Yang
,
Z.
,
2013
, “
Calculations of the Average Normal Effective Emissivity for Nonaxisymmetric Cavities Using the Modified Finite Volume Method
,”
Opt. Eng.
,
52
(
3
), p.
039702
.10.1117/1.OE.52.3.039702
8.
Saljnikov
,
A.
,
Komatina
,
M.
,
Manovic
,
V.
,
Gojak
,
M.
, and
Goricanec
,
D.
,
2009
, “
Investigation on Thermal Radiation Spectra of Coal Ash Deposits
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2871
2884
.10.1016/j.ijheatmasstransfer.2008.12.007
9.
Saljnikov
,
A.
,
Vucicevic
,
B.
,
Komatina
,
M.
,
Gojak
,
M.
,
Goricanec
,
D.
, and
Stevanovic
,
Z.
,
2009
, “
Spectroscopic Research on Infrared Emittance of Coal Ash Deposits
,”
Exp. Therm Fluid Sci.
,
33
(
8
), pp.
1133
1141
.10.1016/j.expthermflusci.2009.07.002
10.
Moore
,
T. J.
,
Cundick
,
D. P.
,
Jones
,
M. R.
,
Tree
,
D. R.
,
Maynes
,
R. D.
, and
Baxter
,
L. L.
,
2011
, “
In Situ Measurements of the Spectral Emittance of Coal Ash Deposits
,”
J. Quant. Spectrosc. Radiat. Transfer
,
112
(
12
), pp.
1978
1986
.10.1016/j.jqsrt.2011.04.013
11.
Bohnes
,
S.
,
Scherer
,
V.
,
Linka
,
S.
,
Neuroth
,
M.
, and
Bruggemann
,
H.
,
2005
, “
Spectral Emissivity Measurements of Single Mineral Phases and Ash Deposits
,” ASME Paper No. HT2005-72099.
12.
Linka
,
S.
,
Wirtz
,
S.
, and
Scherer
,
V.
,
2005
, “
Spectral Thermal Radiation Characteristics of Coal Ashes and Slags: Influence of Chemical Composition and Temperature
,” ASME Paper No. HT2003-47187.
13.
Bhattacharya
,
S. P.
,
2004
, “
Spectral Emittance of Particulate Ash-Like Deposits: Theoretical Predictions Compared to Experimental Measurement
,”
ASME J. Heat Transfer
,
126
(
2
), pp.
286
289
.10.1115/1.1666885
14.
Shimogori
,
M.
,
Yoshizako
,
H.
, and
Matsumura
,
Y.
,
2012
, “
Determination of Coal Ash Emissivity Using Simplified Equation for Thermal Design of Coal-Fired Boilers
,”
Fuel
,
95
(
1
), pp.
241
246
.10.1016/j.fuel.2011.11.005
15.
Bhattacharya
,
S. P.
,
Wall
,
T. F.
, and
Arduini-Schuster
,
M.
,
1997
, “
A Study on the Importance of Dependent Radiative Effects in Determining the Spectral and Total Emittance of Particulate Ash Deposits in Pulverised Fuel Fired Furnaces
,”
Chem. Eng. Process.
,
36
(
6
), pp.
423
432
.10.1016/S0255-2701(97)00024-X
16.
Bhattacharya
,
S. P.
,
1999
, “
Apparent Emittance of Non-Isothermal Particulate Deposits
,”
Int. Commun. Heat Mass Transfer
,
26
(
6
), pp.
771
780
.10.1016/S0735-1933(99)00065-2
17.
Bhattacharya
,
S. P.
,
2000
, “
A Theoretical Investigation of the Influence of Optical Constants and Particle Size on the Radiative Properties and Heat Transfer Involving Ash Clouds and Deposits
,”
Chem. Eng. Process.
,
39
(
5
), pp.
471
483
.10.1016/S0255-2701(00)00096-9
18.
Fiveland
,
W. A.
,
1987
, “
Discrete Ordinate Methods for Radiative Heat-Transfer in Isotropically and Anisotropically Scattering Media
,”
ASME J. Heat Transfer
,
109
(
3
), pp.
809
812
.10.1115/1.3248167
19.
Li
,
H. S.
,
Flamant
,
G.
, and
Lu
,
J. D.
,
2003
, “
An Alternative Discrete Ordinate Scheme for Collimated Irradiation Problems
,”
Int. Commun. Heat Mass Transfer
,
30
(
1
), pp.
61
70
.10.1016/S0735-1933(03)00008-3
20.
Bohren
,
C. F.
, and
Huffman
,
D. R.
,
1983
,
Absorption and Scattering of Light by Small Particles
,
Wiley
,
New York
, pp.
101
118
.
21.
Cartigny
,
J. D.
,
Yamada
,
Y.
, and
Tien
,
C. L.
,
1986
, “
Radiative-Transfer With Dependent Scattering by Particles: Part 1—Theoretical Investigation
,”
ASME J. Heat Transfer
,
108
(
3
), pp.
608
613
.10.1115/1.3246979
22.
Xu
,
Y. L.
,
1995
, “
Electromagnetic Scattering by an Aggregate of Spheres
,”
Appl. Opt.
,
34
(
21
), pp.
4573
4588
.10.1364/AO.34.004573
23.
Meakin
,
P.
,
1983
, “
Formation of Fractal Clusters and Networks by Irreversible Diffusion-Limited Aggregation
,”
Phys. Rev. Lett.
,
51
(
13
), pp.
1119
1122
.10.1103/PhysRevLett.51.1119
24.
Witten
,
T. A.
, and
Sander
,
L. M.
,
1981
, “
Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon
,”
Phys. Rev. Lett.
,
47
(
19
), pp.
1400
1403
.10.1103/PhysRevLett.47.1400
25.
Pan
,
Y. D.
,
Si
,
F. Q.
,
Xu
,
Z. G.
,
Romero
,
C. E.
,
Qiao
,
Z. L.
, and
Ye
,
Y. L.
,
2012
, “
DEM Simulation and Fractal Analysis of Particulate Fouling on Coal-Fired Utility Boilers' Heating Surfaces
,”
Powder Technol.
,
231
, pp.
70
76
.10.1016/j.powtec.2012.07.045
26.
Kweon
,
S. C.
,
Ramer
,
E.
, and
Robinson
,
A. L.
,
2003
, “
Measurement and Simulation of Ash Deposit Microstructure
,”
Energy Fuels
,
17
(
5
), pp.
1311
1323
.10.1021/ef020277f
27.
Goodwin
,
D. G.
, and
Mitchner
,
M.
,
1989
, “
Flyash Radiative Properties and Effects on Radiative Heat Transfer in Coal-Fired Systems
,”
Int. J. Heat Mass Transfer
,
32
(
4
), pp.
627
638
.10.1016/0017-9310(89)90211-1
28.
Sorensen
,
C. M.
, and
Roberts
,
G. C.
,
1997
, “
The Prefactor of Fractal Aggregates
,”
J. Colloid Interface Sci.
,
186
(
2
), pp.
447
452
.10.1006/jcis.1996.4664
29.
Pierce
,
F.
,
Sorensen
,
C. M.
, and
Chakrabarti
,
A.
,
2006
, “
Computer Simulation of Diffusion-Limited Cluster-Cluster Aggregation With an Epstein Drag Force
,”
Phys. Rev. E
,
74
(
2
), p.
021411
.10.1103/PhysRevE.74.021411
30.
Zhao
,
J. J.
,
Duan
,
Y. Y.
,
Wang
,
X. D.
, and
Wang
,
B. X.
,
2013
, “
Experimental and Analytical Analyses of the Thermal Conductivities and High-Temperature Characteristics of Silica Aerogels Based on Microstructures
,”
J. Phys. D: Appl. Phys.
,
46
(
1
), p.
015304
.10.1088/0022-3727/46/1/015304
31.
Zhao
,
J. J.
,
Duan
,
Y. Y.
,
Wang
,
X. D.
, and
Wang
,
B. X.
,
2013
, “
A 3-D Numerical Heat Transfer Model for Silica Aerogels Based on the Porous Secondary Nanoparticle Aggregate Structure
,”
J. Non-Cryst. Solids
,
358
(
10
), pp.
1287
1297
.10.1016/j.jnoncrysol.2012.02.035
32.
Lallich
,
S.
,
Enguehard
,
F.
, and
Baillis
,
D.
,
2009
, “
Experimental Determination and Modeling of the Radiative Properties of Silica Nanoporous Matrices
,”
ASME J. Heat Transfer
,
131
(
8
), p.
082701
.10.1115/1.3109999
33.
Goodwin
,
D. G.
,
1986
, “
Infrared Optical Constants of Coal Slags
,” Ph.D. thesis, Stanford University, Stanford, CA.
34.
Bohren
,
C. F.
, and
Huffman
,
D. R.
,
1983
,
Absorption and Scattering of Light by Small Particles
,
Wiley
,
New York
, pp.
213
218
.
35.
Palik
,
E. D.
,
1985
,
Handbook of Optical Constants of Solids I
,
Academic
,
New York
, pp.
753
763
.
36.
Toon
,
O. B.
,
Pollack
,
J. B.
, and
Khare
,
B. N.
,
1976
, “
Optical-Constants of Several Atmospheric Aerosol Species—Ammonium-Sulfate, Aluminum-Oxide, and Sodium-Chloride
,”
J. Geophys. Res.
,
81
(
33
), pp.
5733
5748
.10.1029/JC081i033p05733
37.
Neely
,
V. I.
, and
Kemp
,
J. C.
,
1963
, “
Optical Absorption in CaO Single Crystals
,”
J. Phys. Chem. Solids
,
24
(
11
), pp.
1301
1304
.10.1016/0022-3697(63)90174-4
39.
Pang
,
C. H.
,
Hewakandamby
,
B.
,
Wu
,
T.
, and
Lester
,
E.
,
2013
, “
An Automated Ash Fusion Test for Characterisation of the Behaviour of Ashes From Biomass and Coal at Elevated Temperatures
,”
Fuel
,
103
, pp.
454
466
.10.1016/j.fuel.2012.06.120
40.
Adell
, V
.
,
Cheeseman
,
C. R.
,
Ferraris
,
M.
,
Salvo
,
M.
,
Smeacetto
,
F.
, and
Boccaccini
,
A. R.
,
2007
, “
Characterising the Sintering Behaviour of Pulverised Fuel Ash Using Heating Stage Microscopy
,”
Mater. Charact.
,
58
(
10
), pp.
980
988
.10.1016/j.matchar.2006.10.004
41.
Yang
,
J. G.
,
Deng
,
F. R.
,
Zhao
,
H.
, and
Cen
,
K. F.
,
2007
, “
Mineral Conversion and Microstructure Change in the Melting Process of Shenmu Coal Ash
,”
Asia-Pac. J. Chem. Eng.
,
2
(
3
), pp.
165
70
.10.1002/apj.36
42.
Zbogar
,
A.
,
Frandsen
,
F. J.
,
Jensen
,
P. A.
, and
Glarborg
,
P.
,
2005
, “
Heat Transfer in Ash Deposits: A Modelling Tool-Box
,”
Prog. Energy Combust. Sci.
,
31
(
5–6
), pp.
371
421
.10.1016/j.pecs.2005.08.002
43.
Markham
,
J. R.
,
Best
,
P. E.
,
Solomon
,
P. R.
, and
Yu
,
Z. Z.
,
1992
, “
Measurement of Radiative Properties of Ash and Slag by FT-IR Emission and Reflection Spectroscopy
,”
ASME J. Heat Transfer
,
114
(
2
), pp.
458
464
.10.1115/1.2911295
You do not currently have access to this content.