When heat flux flows in a given medium, its path will solely be determined. This implies that material parameters determined by the predesigned path of heat flux will guide heat to flow along the designed path. Based on this idea, we develop a new method for the design of the cylindrical thermal cloak which can make heat flux detour the cloaked object. For the inhomogeneous anisotropic medium, we derive the relation between the path trajectory of heat flux and material parameters and obtain two differential equations and one boundary condition which are used to determine material parameters in the cylindrical cloak. The transient behavior on the flow of heat flux is simulated by Comsol Multiphysics and the transient thermal protection of the cylindrical cloak for the cloaked object is examined. The effect of the product of density and specific heat on the dynamic diffusion process of heat flux is analyzed. Since one can flexibly design the path of heat flux in the cloak, it has the large degree of freedom to construct thermal cloaks with the specific distributions of material parameters. The present method provides a new blue print for the transient thermal protection of a specific target.

References

1.
Greenleaf
,
A.
,
Lassas
,
M.
, and
Uhlmann
,
G.
,
2003
, “
On Nonuniqueness for Calderon's Inverse Problem
,”
Math. Res. Lett.
,
10
(
5–6
), pp.
685
694
.10.4310/MRL.2003.v10.n5.a11
2.
Pendry
,
J. B.
,
Schurig
,
D.
, and
Smith
,
D. R.
,
2006
, “
Controlling Electromagnetic Fields
,”
Science
,
312
(
5781
), pp.
1780
1782
.10.1126/science.1125907
3.
Leonhardt
,
U.
,
2006
, “
Optical Conformal Mapping
,”
Science
,
312
(
5781
), pp.
1777
1780
.10.1126/science.1126493
4.
Schurig
,
D.
,
Pendry
,
J. B.
, and
Smith
,
D. R.
,
2006
, “
Calculation of Material Properties and Ray Tracing in Transformation Media
,”
Opt. Express
,
14
(
21
), pp.
9794
9804
.10.1364/OE.14.009794
5.
Chen
,
H. S.
,
Wu
,
B. I.
,
Zhang
,
B. L.
, and
Kong
,
J. A.
,
2007
, “
Electromagnetic Wave Interactions With a Metamaterial Cloak
,”
Phys. Rev. Lett.
,
99
(
6
), p.
063903
.10.1103/PhysRevLett.99.063903
6.
Ruan
,
Z. C.
,
Yan
,
M.
,
Neff
,
C. W.
, and
Qiu
,
M.
,
2007
, “
Ideal Cylindrical Cloak: Perfect but Sensitive to Tiny Perturbations
,”
Phys. Rev. Lett.
,
99
(
11
), p.
113903
.10.1103/PhysRevLett.99.113903
7.
Cummer
,
S. A.
,
Popa
,
B. I.
,
Schurig
,
D.
,
Smith
,
D. R.
, and
Pendry
,
J. B.
,
2006
, “
Full-Wave Simulations of Electromagnetic Cloaking Structures
,”
Phys. Rev. E
,
74
(
3
), p.
036621
.10.1103/PhysRevE.74.036621
8.
Cummer
,
S. A.
, and
Schurig
,
D.
,
2007
, “
One Path to Acoustic Cloaking
,”
New J. Phys.
,
9
(
3
), pp.
45
52
.10.1088/1367-2630/9/3/045
9.
Norris
,
A. N.
,
2008
, “
Acoustic Cloaking Theory
,”
Proc. R. Soc. A
,
464
(
2097
), pp.
2411
2434
.10.1098/rspa.2008.0076
10.
Zhang
,
S.
,
Xia
,
C. G.
, and
Fang
,
N.
,
2011
, “
Broadband Acoustic Cloak for Ultrasound Waves
,”
Phys. Rev. Lett.
,
106
(
2
), p.
024301
.10.1103/PhysRevLett.106.024301
11.
Farhat
,
M.
,
Guenneau
,
S.
,
Enoch
,
S.
, and
Movchan
,
A. B.
,
2009
, “
Cloaking Bending Waves Propagating in Thin Elastic Plates
,”
Phys. Rev. B
,
79
(
3
), p.
033102
.10.1103/PhysRevB.79.033102
12.
Colquitt
,
D. J.
,
Jones
,
I. S.
,
Movchan
,
N. V.
,
Movchan
,
A. B.
,
Brun
,
M.
, and
McPhedran
,
R. C.
,
2013
, “
Making Waves Round a Structured Cloak: Lattices, Negative Refraction and Fringes
,”
Proc. R. Soc. A
,
469
(
2157
).10.1098/rspa.2013.0218
13.
Greenleaf
,
A.
,
Kurylev
,
Y.
,
Lassas
,
M.
, and
Uhlmann
,
G.
,
2008
, “
Isotropic Transformation Optics: Approximate Acoustic and Quantum Cloaking
,”
New J. Phys.
,
10
(
11
), p.
115024
.10.1088/1367-2630/10/11/115024
14.
Zhang
,
S.
,
Genov
,
D. A.
,
Sun
,
C.
, and
Zhang
,
X.
,
2008
, “
Cloaking of Matter Waves
,”
Phys. Rev. Lett.
,
100
(
12
), p.
123002
.10.1103/PhysRevLett.100.123002
15.
Guenneau
,
S.
,
Amra
,
C.
, and
Veynante
,
D.
,
2012
, “
Transformation Thermodynamics: Cloaking and Concentrating Heat Flux
,”
Opt. Express
,
20
(
7
), pp.
8207
8218
.10.1364/OE.20.008207
16.
He
,
X.
, and
Wu
,
L. Z.
,
2013
, “
Design of Two-Dimensional Open Cloaks With Finite Material Parameters for Thermodynamics
,”
Appl. Phys. Lett.
,
102
(
21
), p.
211912
.10.1063/1.4807920
17.
Schittny
,
R.
,
Kadic
,
M.
,
Guenneau
,
S.
, and
Wegener
,
M.
,
2013
, “
Experiments on Transformation Thermodynamics: Molding the Flow of Heat
,”
Phys. Rev. Lett.
,
110
(
19
), p.
195901
.10.1103/PhysRevLett.110.195901
18.
Leonhardt
,
U.
,
2013
, “
Applied Physics Cloaking of Heat
,”
Nature
,
498
(
7455
), pp.
440
441
.10.1038/498440a
19.
Guenneau
,
S.
, and
Amra
,
C.
,
2013
, “
Anisotropic Conductivity Rotates Heat Fluxes in Transient Regimes
,”
Opt. Express
,
21
(
5
), pp.
6578
6583
.10.1364/OE.21.006578
20.
Chen
,
H.
, and
Chan
,
C. T.
,
2007
, “
Transformation Media That Rotate Electromagnetic Fields
,”
Appl. Phys. Lett.
,
90
(
24
), p.
241105
.10.1063/1.2748302
21.
Chen
,
H.
,
Hou
,
B.
,
Chen
,
S.
,
Ao
,
X.
,
Wen
,
W.
, and
Chan
,
C. T.
,
2009
, “
Design and Experimental Realization of a Broadband Transformation Media Field Rotator at Microwave Frequencies
,”
Phys. Rev. Lett.
,
102
(
18
), p.
183903
.10.1103/PhysRevLett.102.183903
22.
He
,
X.
, and
Wu
,
L. Z.
,
2013
, “
Thermal Transparency With the Concept of Neutral Inclusion
,”
Phys. Rev. E
,
88
(
3
), p.
033201
.10.1103/PhysRevE.88.033201
23.
Fan
,
C. Z.
,
Gao
,
Y. G.
, and
Huang
,
J. P.
,
2008
, “
Shaped Graded Materials With an Apparent Negative Thermal Conductivity
,”
Appl. Phys. Lett.
,
92
(
25
), p.
251907
.10.1063/1.2951600
24.
Han
,
T. C.
,
Yuan
,
T.
,
Li
,
B. W.
, and
Qiu
,
C. W.
,
2013
, “
Homogeneous Thermal Cloak With Constant Conductivity and Tunable Heat Localization
,”
Sci. Rep.
,
3
, p.
1593
.10.1038/srep01593
25.
Narayana
,
S.
, and
Sato
,
Y.
,
2012
, “
Heat Flux Manipulation With Engineered Thermal Materials
,”
Phys. Rev. Lett.
,
108
(
21
), p.
214303
.10.1103/PhysRevLett.108.214303
26.
Narayana
,
S.
,
Savo
,
S.
, and
Sato
,
Y.
,
2013
, “
Transient Heat Flux Shielding Using Thermal Metamaterials
,”
Appl. Phys. Lett.
,
102
(
20
), p.
201904
.10.1063/1.4807744
27.
Ma
,
Y. G.
,
Lan
,
L.
,
Jiang
,
W.
,
Sun
,
F.
, and
He
,
S. L.
,
2013
, “
A Transient Thermal Cloak Experimentally Realized Through a Rescaled Diffusion Equation With Anisotropic Thermal Diffusivity
,”
NPG Asia Mater.
,
5
, p.
e73
.10.1038/am.2013.60
28.
Xu
,
H. Y.
,
Shi
,
X. H.
,
Gao
,
F.
,
Sun
,
H. D.
, and
Zhang
,
B. L.
,
2014
, “
Ultrathin Three-Dimensional Thermal Cloak
,”
Phys. Rev. Lett.
,
112
(
5
), p.
054301
.10.1103/PhysRevLett.112.054301
29.
Han
,
T. C.
,
Bai
,
X.
,
Gao
,
D. L.
,
Thong
,
J. T. L.
,
Li
,
B. W.
, and
Qiu
,
C. W.
,
2014
, “
Experimental Demonstration of a Bilayer Thermal Cloak
,”
Phys. Rev. Lett.
,
112
(
5
), p.
054302
.10.1103/PhysRevLett.112.054302
30.
Nowinski
,
J. L.
,
1978
,
Theory of Thermoelasticity With Applications
,
Sijthoff & Noordhoff International Publishers
,
Alphen aan den Rijn, The Netherlands
, pp.
161
162
.
31.
Kravtsov
,
Y. A.
, and
Orlov
,
Y. I.
,
1990
,
Geometrical Optics of Inhomogeneous Media
,
Springer-Verlag
,
New York
, pp.
4
6
.
32.
Crudo
,
R. A.
, and
O'Brien
,
J. G.
,
2009
, “
Metric Approach to Transformation Optics
,”
Phys. Rev. A
,
80
(
3
), p.
033824
.10.1103/PhysRevA.80.033824
33.
Auld
,
B. A.
,
1973
,
Acoustic Fields and Waves in Solids
,
Wiley
,
New York
, p.
211
.
34.
Leclerc
,
M.
, and
Najari
,
A.
,
2011
, “
Organic Thermoelectrics: Green Energy From a Blue Polymer
,”
Nat. Mater.
,
10
(
6
), pp.
409
410
.10.1038/nmat3032
35.
Li
,
N. B.
,
2012
, “
Colloquium: Phononics: Manipulating Heat Flow With Electronic Analogs and Beyond
,”
Rev. Mod. Phys.
,
84
(
3
), pp.
762
767
.10.1103/RevModPhys.84.1045
You do not currently have access to this content.