We present in this paper numerical simulation results of the thermal radiative properties of a two-dimensional (2D) rectangular SiC grating atop a photonic crystal (PC). The results show that surface phonon polaritons (SPhPs) can be excited by both TE and TM waves when they are scattered by the 2D grating. Excitation of SPhPs, PC modes, and magnetic polaritons (MPs), and interactions between them give rise to great enhancement of the emissivity. Distinct effects of the grating geometry on the resonance of SPhPs, PC modes, and MPs were revealed, which suggest a way to effectively manipulate the emissivity by tuning the structure's geometry. Furthermore, the results indicate that quasi-diffuse emissivity of the structure can be obtained for both TE and TM waves.

References

1.
Atwater
,
H. A.
, and
Polman
,
A.
,
2010
, “
Plasmonics for Improved Photovoltaic Devices
,”
Nat. Mater.
,
9
(3), pp.
205
213
.10.1038/nmat2629
2.
Ebbesen
,
T. W.
,
Lezec
,
H. J.
,
Ghaemi
,
H. F.
,
Thio
,
T.
, and
Wolff
,
P. A.
,
1998
, “
Extraordinary Optical Transmission Through Sub-Wavelength Hole Arrays
,”
Nature
,
391
(6668), pp.
667
669
.10.1038/35570
3.
Barnes
,
W. L.
,
Murray
,
W. A.
,
Dintinger
,
J.
,
Devaux
,
E.
, and
Ebbesen
,
T. W.
,
2004
, “
Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light Through Periodic Arrays of Subwavelength Holes in a Metal Film
,”
Phys. Rev. Lett.
,
92
(10), p.
107401
.10.1103/PhysRevLett.92.107401
4.
Garcia-Vidal
,
F. J.
,
Martin-Moreno
,
L.
,
Ebbesen
,
T. W.
, and
Kuipers
,
L.
,
2010
, “
Light Passing Through Subwavelength Apertures
,”
Rev. Mod. Phys.
,
82
(1), pp.
729
787
.10.1103/RevModPhys.82.729
5.
Greffet
,
J.-J.
,
Carminati
,
R.
,
Joulain
,
K.
,
Mulet
,
J. P.
,
Mainguy
,
S. P.
, and
Chen
,
Y.
,
2002
, “
Coherent Emission of Light by Thermal Sources
,”
Nature (London)
,
416
(6876), pp.
61
64
.10.1038/416061a
6.
Lee
,
B. J.
,
Fu
,
C. J.
, and
Zhang
,
Z. M.
,
2005
, “
Coherent Thermal Emission From One-Dimensional Photonic Crystals
,”
Appl. Phys. Lett.
,
87
(7), p.
071904
.10.1063/1.2010613
7.
Wang
,
L. P.
, and
Zhang
,
Z. M.
,
2009
, “
Resonance Transmission or Absorption in Deep Grating Explained by Magnetic Polaritons
,”
Appl. Phys. Lett.
,
95
(11), p.
111904
.10.1063/1.3226661
8.
Shen
,
S.
,
Narayanaswamy
,
A.
, and
Chen
,
G.
,
2009
, “
Surface Phonon Polaritons Mediated Energy Transfer Between Nanoscale Gaps
,”
Nano Lett.
,
9
(8), pp.
2909
2913
.10.1021/nl901208v
9.
Bouchon
,
P.
,
Koechlin
,
C.
,
Pardo
,
F.
,
Haidar
,
R.
, and
Pelouard
,
J.-L.
,
2012
, “
Wideband Omnidirectional Infrared Absorber With a Patchwork of Plasmonic Nanoantennas
,”
Opt. Lett.
,
37
(
6
), pp.
1038
1040
.10.1364/OL.37.001038
10.
Hao
,
J. M.
,
Wang
,
J.
,
Liu
,
X. L.
,
Padilla
,
W. J.
,
Zhou
,
L.
, and
Qiu
,
M.
,
2010
, “
High Performance Optical Absorber Based on a Plasmonic Metamaterial
,”
Appl. Phys. Lett.
,
96
(25), p.
251104
.10.1063/1.3442904
11.
Cattoni
,
A.
,
Ghenuche
,
P.
,
Haghiri-Gosnet
,
A.-M.
,
Dcanini
,
D.
,
Chen
,
J.
,
Pelouard
,
J.-L.
, and
Collin
,
S.
,
2011
, “
λ3/1000 Plasmonic Nanocavities for Biosensing Fabricated by Soft UV Nanoimprint Lithography
,”
Nano Lett.
,
11
(
9
), pp.
3557
3563
.10.1021/nl201004c
12.
Liu
,
N.
,
Mesch
,
M.
,
Weiss
,
T.
,
Hentschel
,
M.
, and
Giessen
,
H.
,
2010
, “
Infrared Perfect Absorber and Its Application as Plasmonic Sensor
,”
Nano Lett.
,
10
(
7
), pp.
2342
2348
.10.1021/nl9041033
13.
Liu
,
N.
,
Langguth
,
L.
,
Weiss
,
T.
,
Kästel
,
J.
,
Fleischhauer
,
M.
,
Pfau
,
T.
, and
Giessen
,
H.
,
2009
, “
Plasmonic Analogue of Electromagnetically Induced Transparency at the Drude Damping Limit
,”
Nat. Mater.
,
8
(9), pp.
758
762
.10.1038/nmat2495
14.
Zhang
,
S.
,
Genov
,
D. A.
,
Wang
,
Y.
,
Liu
,
M.
, and
Zhang
,
X.
,
2008
, “
Plasmon-Induced Transparency in Metamaterials
,”
Phys. Rev. Lett.
,
101
(4), p.
047401
.10.1103/PhysRevLett.101.047401
15.
Christ
,
A.
,
Zentgraf
,
T.
,
Tikhodeev
,
S. G.
,
Gippius
,
N. A.
,
Kuhl
,
J.
, and
Giessen
,
H.
,
2006
, “
Controlling the Interaction Between Localized and Delocalized Surface Plasmon Modes: Experiment and Numerical Calculations
,”
Phys. Rev. B
,
74
(15), p.
155435
.10.1103/PhysRevB.74.155435
16.
Wang
,
L. P.
, and
Zhang
,
Z. M.
,
2011
, “
Phonon-Mediated Magnetic Polaritons in the Infrared Region
,”
Opt. Exp.
,
19
(
S2
), pp.
A126
A135
.10.1364/OE.19.00A126
17.
Wang
,
W. J.
,
Fu
,
C. J.
, and
Tan
,
W. C.
,
2013
, “
Thermal Radiative Properties of a SiC Grating on a Photonic Crystal
,”
ASME J. Heat Transfer
,
135
(
9
), p.
091504
.10.1115/1.4024468
18.
Salomon
,
L.
,
Grillot
,
F.
,
Zayats
,
A. V.
, and
de Fornel
,
F.
,
2001
, “
Near-Filed Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film
,”
Phys. Rev. Lett.
,
86
(6), pp.
1110
1113
.10.1103/PhysRevLett.86.1110
19.
Tetz
,
K. A.
,
Rokitski
,
R.
,
Nezhad
,
M.
, and
Fainman
,
Y.
,
2005
, “
Excitation and Direct Imaging of Surface Plasmon Polariton Modes in a Two-Dimensional Grating
,”
Appl. Phys. Lett.
,
86
(11), p.
111110
.10.1063/1.1883334
20.
Li
,
T.
,
Li
,
J. Q.
,
Wang
,
F. M.
,
Wang
,
Q. L.
,
Liu
,
H.
,
Zhu
,
S. N.
, and
Zhu
,
Y. Y.
,
2007
, “
Exploring Magnetic Plasmon Polaritons in Optical Transmission Through Hole Arrays Perforated in Trilayer Structures
,”
Appl. Phys. Lett.
,
90
(25), p.
251112
.10.1063/1.2750394
21.
Palik
,
E. D.
,
1985
,
Handbook of Optical Constants of Solids
,
Academic
,
Orlando, FL
.
You do not currently have access to this content.