Laminar flow and heat transfer behaviors of two different metal oxide, Al2O3 (36 nm) and CuO (29 nm), nanofluids flowing through an annular coiled tube heat exchanger (ACTHE) with constant wall temperature boundary condition have been numerically studied to evaluate their superiority over the base fluid (water). Simulations covered a range of nanoparticles volume concentrations of 1.0–6.0% and mass flow rates from 0.025 to 0.125 kg/s. Numerical results indicated that a considerable heat transfer enhancement is achieved by both nanofluids. Results at the same Reynolds number for the pressure drop and heat transfer coefficient show an increase with increasing particle volumetric concentration. The maximum enhancements in heat transfer coefficient were 44.8% and 18.9% for CuO/water and Al2O3/water, respectively. On the other hand, the pressure loss was seven times in comparison to water for CuO/water and about two times for Al2O3/water nanofluid. Also, comparing to the base fluid, nanofluids at low concentrations (up to 3%) can provide the same heat transfer amount at lower pumping power. The overall performance of the enhanced heat transfer technique utilized has been evaluated using a thermohydrodynamic performance index which indicated that Al2O3/water nanofluid is a better choice than CuO/water nanofluid. Moreover, conventional correlations for helical circular tubes for predicting friction factor and average heat transfer in laminar flow regime such as the correlations of Mori and Nakayam and Manlapaz and Churcill, respectively, are also valid for water and the tested nanofluids with small nanoparticle loading in the ACTHE.

References

1.
Bergles
,
A. E.
,
2002
, “
ExHFT for Fourth Generation Heat Transfer Technology
,”
Exp. Therm. Fluid Sci.
,
26
(
2
), pp.
335
344
.
2.
Vashisth
,
S.
,
Kumar
,
V.
, and
Nigam
,
K. D.
,
2008
, “
A Review on the Potential Applications of Curved Geometries in Process Industry
,”
Ind. Eng. Chem. Res.
,
47
(
10
), pp.
3291
3337
.
3.
Naphon
,
P.
, and
Wongwises
,
S.
,
2006
, “
A Review of Flow and Heat Transfer Characteristics in Curved Tubes
,”
Renewable Sustainable Energy Rev.
,
10
(
5
), pp.
463
490
.
4.
Garimella
,
S.
,
Richards
,
D.
, and
Christensen
,
R.
,
1988
, “
Experimental Investigation of Heat Transfer in Coiled Annular Ducts
,”
ASME J. Heat Transfer
,
110
(
2
), pp.
329
336
.
5.
Petrakis
,
M.
, and
Karahalios
,
G.
,
1996
, “
Steady Flow in a Curved Pipe With a Coaxial Core
,”
Int. J. Num. Methods Fluids
,
22
(
12
), pp.
1231
1237
.
6.
Xin
,
R.
,
Awwad
,
A.
,
Dong
,
Z.
, and
Ebadian
,
M.
,
1997
, “
An Experimental Study of Single-Phase and Two-Phase Flow Pressure Drop in Annular Helicoidal Pipes
,”
Int. J. Heat Fluid Flow
,
18
(
5
), pp.
482
488
.
7.
Petrakis
,
M.
, and
Karahalios
,
G.
,
1999
, “
Fluid Flow Behaviour in a Curved Annular Conduit
,”
Int. J. Non-Linear Mech.
,
34
(
1
), pp.
13
25
.
8.
Rennie
,
T. J.
, and
Raghavan
,
V. G.
,
2005
, “
Experimental Studies of a Double-Pipe Helical Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
29
(
8
), pp.
919
924
.
9.
Rennie
,
T. J.
, and
Raghavan
,
V. G.
,
2006
, “
Numerical Studies of a Double-Pipe Helical Heat Exchanger
,”
Appl. Therm. Eng.
,
26
(
11
), pp.
1266
1273
.
10.
Kumar
,
V.
,
Saini
,
S.
,
Sharma
,
M.
, and
Nigam
,
K.
,
2006
, “
Pressure Drop and Heat Transfer Study in Tube-in-Tube Helical Heat Exchanger
,”
Chem. Eng. Sci.
,
61
(
13
), pp.
4403
4416
.
11.
Kumar
,
V.
,
Faizee
,
B.
,
Mridha
,
M.
, and
Nigam
,
K.
,
2008
, “
Numerical Studies of a Tube-in-Tube Helically Coiled Heat Exchanger
,”
Chem. Eng. Process. Process Intensif.
,
47
(
12
), pp.
2287
2295
.
12.
Mandal
,
M. M.
, and
Nigam
,
K.
,
2009
, “
Experimental Study on Pressure Drop and Heat Transfer of Turbulent Flow in Tube in Tube Helical Heat Exchanger
,”
Ind. Eng. Chem. Res.
,
48
(
20
), pp.
9318
9324
.
13.
Wu
,
S.-Y.
,
Chen
,
S.-J.
,
Xiao
,
L.
, and
Li
,
Y.-R.
,
2011
, “
Numerical Investigation on Developing Laminar Forced Convective Heat Transfer and Entropy Generation in an Annular Helicoidal Tube
,”
J. Mech. Sci. Technol.
,
25
(
6
), pp.
1439
1447
.
14.
Gomaa
,
A.
,
Aly
,
W. I.
,
Omara
,
M.
, and
Abdelmagied
,
M.
,
2014
, “
Correlations for Heat Transfer Coefficient and Pressure Drop in the Annulus of Concentric Helical Coils
,”
Heat Mass Transfer
,
50
(
4
), pp.
583
586
.
15.
Aly
,
W. I.
,
2014
, “
Computational Fluid Dynamics and Optimization of Flow and Heat Transfer in Coiled Tube-in-Tube Heat Exchangers Under Turbulent Flow Conditions
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
3
), p.
031001
.
16.
Chol
,
S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
,
D. A.
Siginer
and
H. P.
Wang
, eds., ASME, New York, FED-Vol.231/MD-Vol. 66, pp.
99
105
.
17.
Sasmito
,
A. P.
,
Kurnia
,
J. C.
, and
Mujumdar
,
A. S.
,
2011
, “
Numerical Evaluation of Laminar Heat Transfer Enhancement in Nanofluid Flow in Coiled Square Tubes
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
1
14
.
18.
Huminic
,
G.
, and
Huminic
,
A.
,
2011
, “
Heat Transfer Characteristics in Double Tube Helical Heat Exchangers Using Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
(
19
), pp.
4280
4287
.
19.
Hashemi
,
S.
, and
Akhavan-Behabadi
,
M.
,
2012
, “
An Empirical Study on Heat Transfer and Pressure Drop Characteristics of CuO–Base Oil Nanofluid Flow in a Horizontal Helically Coiled Tube Under Constant Heat Flux
,”
Int. Commun. Heat Mass Transfer
,
39
(
1
), pp.
144
151
.
20.
Narrein
,
K.
, and
Mohammed
,
H.
,
2013
, “
Influence of Nanofluids and Rotation on Helically Coiled Tube Heat Exchanger Performance
,”
Thermochim. Acta
,
564
, pp.
13
23
.
21.
Kahani
,
M.
,
Heris
,
S. Z.
, and
Mousavi
,
S. M.
,
2013
, “
Comparative Study Between Metal Oxide Nanopowders on Thermal Characteristics of Nanofluid Flow Through Helical Coils
,”
Powder Technol.
,
246
, pp.
82
92
.
22.
Akbaridoust
,
F.
,
Rakhsha
,
M.
,
Abbassi
,
A.
, and
Saffar-Avval
,
M.
,
2013
, “
Experimental and Numerical Investigation of Nanofluid Heat Transfer in Helically Coiled Tubes at Constant Wall Temperature Using Dispersion Model
,”
Int. J. Heat Mass Transfer
,
58
(
1
), pp.
480
491
.
23.
Jamal-Abad
,
M. T.
,
Zamzamian
,
A.
, and
Dehghan
,
M.
,
2013
, “
Experimental Studies on the Heat Transfer and Pressure Drop Characteristics of Cu–Water and Al–Water Nanofluids in a Spiral Coil
,”
Exp. Therm. Fluid Sci.
,
47
, pp.
206
212
.
24.
Aly
,
W. I. A.
,
2014
, “
Numerical Study on Turbulent Heat Transfer and Pressure Drop of Nanofluid in Coiled Tube-in-Tube Heat Exchangers
,”
Energy Convers. Manage.
,
79
, pp.
304
316
.
25.
Cioncolini
,
A.
, and
Santini
,
L.
,
2006
, “
An Experimental Investigation Regarding the Laminar to Turbulent Flow Transition in Helically Coiled Pipes
,”
Exp. Therm. Fluid Sci.
,
30
(
4
), pp.
367
380
.
26.
Khanafer
,
K.
, and
Vafai
,
K.
,
2011
, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
(
19
), pp.
4410
4428
.
27.
Nguyen
,
C.
,
Desgranges
,
F.
,
Roy
,
G.
,
Galanis
,
N.
,
Mare
,
T.
,
Boucher
,
S.
, and
Mintsa
,
H. A.
,
2007
, “
Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids–Hysteresis Phenomenon
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1492
1506
.
28.
Mintsa
,
H. A.
,
Roy
,
G.
,
Nguyen
,
C. T.
, and
Doucet
,
D.
,
2009
, “
New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
363
371
.
29.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer Int. J.
,
11
(
2
), pp.
151
170
.
30.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3707
.
31.
Abu-Nada
,
E.
,
2009
, “
Effects of Variable Viscosity and Thermal Conductivity of Al2O3–Water Nanofluid on Heat Transfer Enhancement in Natural Convection
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
679
690
.
32.
Xin
,
R.
, and
Ebadian
,
M.
,
1997
, “
The Effects of Prandtl Numbers on Local and Average Convective Heat Transfer Characteristics in Helical Pipes
,”
ASME J. Heat Transfer
,
119
(
3
), pp.
467
473
.
33.
Aly
,
W. I.
,
Inaba
,
H.
,
Haruki
,
N.
, and
Horibe
,
A.
,
2006
, “
Drag and Heat Transfer Reduction Phenomena of Drag-Reducing Surfactant Solutions in Straight and Helical Pipes
,”
ASME J. Heat Transfer
,
128
(
8
), pp.
800
810
.
34.
Pathipakka
,
G.
, and
Sivashanmugam
,
P.
,
2010
, “
Heat Transfer Behaviour of Nanofluids in a Uniformly Heated Circular Tube Fitted With Helical Inserts in Laminar Flow
,”
Superlattices Microstruct.
,
47
(
2
), pp.
349
360
.
35.
Eastman
,
J.
,
Choi
,
S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
(
6
), pp.
718
720
.
36.
Wu
,
Z.
,
Wang
,
L.
, and
Sundén
,
B.
,
2013
, “
Pressure Drop and Convective Heat Transfer of Water and Nanofluids in a Double-Pipe Helical Heat Exchanger
,”
Appl. Therm. Eng.
,
60
(
1–2
), pp.
266
274
.
37.
Naphon
,
P.
,
2016
, “
Experimental Investigation the Nanofluids Heat Transfer Characteristics in Horizontal Spirally Coiled Tubes
,”
Int. J. Heat Mass Transfer
,
93
, pp.
293
300
.
38.
White
,
C.
,
1929
, “
Streamline Flow Through Curved Pipes
,”
Proc. R. Soc. London A
,
123
(
792
), pp.
645
663
.
39.
Itō
,
H.
,
1969
, “
Laminar Flow in Curved Pipes
,”
ZAMM J. Appl. Math. Mech.
,
49
(
11
), pp.
653
663
.
40.
Yasuo
,
M.
, and
Wataru
,
N.
,
1965
, “
Study on Forced Convective Heat Transfer in Curved Pipes: (1st Report, Laminar Region)
,”
Int. J. Heat Mass Transfer
,
8
(
1
), pp.
67
82
.
41.
Schmidt
,
E. F.
,
1967
, “
Wärmeübergang und Druckverlust in Rohrschlangen
,”
Chem. Ing. Tech.
,
39
(
13
), pp.
781
789
.
42.
Srinivasan
,
P.
,
Nandapurkar
,
S.
, and
Holland
,
F.
,
1970
, “
Friction Factors for Coils
,”
Trans. Inst. Chem. Eng.
,
48
(
4–6
), pp.
T156
T161
.
43.
Mishra
,
P.
, and
Gupta
,
S.
,
1979
, “
Momentum Transfer in Curved Pipes—1: Newtonian Fluids
,”
Ind. Eng. Chem. Process Des. Dev.
,
18
(
1
), pp.
130
137
.
44.
Manlapaz
,
R. L.
, and
Churchill
,
S. W.
,
1981
, “
Fully Developed Laminar Convection From a Helical Coil
,”
Chem. Eng. Commun.
,
9
(
1–6
), pp.
185
200
.
45.
Dravid
,
A. N.
,
Smith
,
K.
,
Merrill
,
E.
, and
Brian
,
P.
,
1971
, “
Effect of Secondary Fluid Motion on Laminar Flow Heat Transfer in Helically Coiled Tubes
,”
AIChE J.
,
17
(
5
), pp.
1114
1122
.
46.
Kalb
,
C. E.
, and
Seader
,
J.
,
1974
, “
Fully Developed Viscous—Flow Heat Transfer in Curved Circular Tubes With Uniform Wall Temperature
,”
AIChE J.
,
20
(
2
), pp.
340
346
.
47.
Usui
,
H.
,
Sano
,
Y.
,
Iwashita
,
K.
, and
Isozaki
,
A.
,
1986
, “
Enhancement of Heat Transfer by a Combination of Internally Grooved Rough Tube and Twisted Tape
,”
Int. Chem. Eng
,
26
(
1
), pp.
97
104
.
48.
Prasher
,
R.
,
Song
,
D.
,
Wang
,
J.
, and
Phelan
,
P.
,
2006
, “
Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications
,”
Appl. Phys. Lett.
,
89
(
13
), p.
133108
.
49.
Sergis
,
A.
, and
Hardalupas
,
Y.
,
2011
, “
Anomalous Heat Transfer Modes of Nanofluids: A Review Based on Statistical Analysis
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
1
37
.
50.
Mori
,
Y.
, and
Nakayama
,
W.
,
1967
, “
Study on Forced Convective Heat Transfer in Curved Pipes: (3rd Report, Theoretical Analysis Under the Condition of Uniform Wall Temperature and Practical Formulae)
,”
Int. J. Heat Mass Transfer
,
10
(
5
), pp.
681
695
.
51.
Akiyama
,
M.
, and
Cheng
,
K.
,
1972
, “
Laminar Forced Convection Heat Transfer in Curved Pipes With Uniform Wall Temperature
,”
Int. J. Heat Mass Transfer
,
15
(
7
), pp.
1426
1431
.
52.
Pimenta
,
T. A.
, and
Campos
,
J.
,
2013
, “
Heat Transfer Coefficients From Newtonian and Non-Newtonian Fluids Flowing in Laminar Regime in a Helical Coil
,”
Int. J. Heat Mass Transfer
,
58
(
1
), pp.
676
690
.
You do not currently have access to this content.