This paper experimentally investigates how different mass concentration and aspect ratio multiwall carbon nanotubes (MWCNTs) acetone nanofluid affects the heat transfer performance of a flat plate heat pipe (FPHP). Different mass concentration and aspect ratio MWCNTs-acetone nanofluids are prepared without any surfactants or additives using the two-step method. Aspect ratios of MWCNTs are 666 (M1) and 200 (M2), respectively, and their according mass concentrations are 0.002, 0.005, 0.01, and 0.015 wt. %, respectively. The thermal resistance and wall temperature of the FPHP are experimentally obtained when the above-mentioned nanofluids are used as working fluid. The results showed that different mass concentration affects the heat transfer performance, therefore, there is an optimal MWCNTs-acetone nanofluid mass concentration (about 0.005wt. %). Also, the results showed that the thermal resistances of the FPHP with M1-acetone nanofluid (0.005 wt. %) and M2-acetone nanofluid (0.005 wt. %) are reduced 40% and 16%, respectively. Based on the above experimental phenomenon, this paper discusses the reasons for enhancement and decrement of heat transfer performance of the different mass concentration. For the M1-acetone nanofluid, the investigated FPHP has a thermal resistance of 0.26 °C/W and effective thermal conductivity 3212 W/m k at a heat input of 160 W. For the M2-acetone nanofluid, the investigated FPHP has a thermal resistance of 0.33 °C/W and effective thermal conductivity 2556 W/m k at a heat input of 150 W. The nanofluid FPHP investigated here provides a new approach in designing a high efficient next generation heat pipe cooling devices.

References

1.
Xuan
,
Y.
,
Hong
,
Y.
, and
Li
,
Q.
,
2004
, “
Investigation on Transient Behaviors of Flat Plate Heat Pipes
,”
Exp. Therm. Fluid Sci.
,
28
(
2
), pp.
249
255
.
2.
Kole
,
M.
, and
Dey
,
T. K.
,
2013
, “
Thermal Performance of Screen Mesh Wick Heat Pipes Using Water-Based Copper Nanofluids
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
763
770
.
3.
Chol
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” Developments and Applications of Non-Newtonian Flows,
D. A.
Siginer
and
H. P.
Wang
, eds, FED-Vol. 231/MD-Vol. 66,
ASME
,
New York
, pp.
99
105
.
4.
Chien
,
H. T.
,
Tsai
,
C. I.
,
Chen
,
P. H.
, and
Chen
,
P. Y.
,
2003
, “
Improvement on Thermal Performance of a Disk-Shaped Miniature Heat Pipe With Nanofluid
,”
ICEPT 2003, Fifth International Conference on
Electronic Packaging Technology,
IEEE
, pp.
389
391
.
5.
Ma
,
H. B.
,
Wilson
,
C.
,
Yu
,
Q.
,
Park
,
K.
,
Choi
,
U. S.
, and
Tirumala
,
M.
,
2006
, “
An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1213
1216
.
6.
Alizad
,
K.
,
Vafai
,
K.
, and
Shafahi
,
M.
,
2012
, “
Thermal Performance and Operational Attributes of the Startup Characteristics of Flat-Shaped Heat Pipes Using Nanofluids
,”
Int. J. Heat Mass Transfer
,
55
(
1
), pp.
140
155
.
7.
Huminic
,
G.
,
Huminic
,
A.
,
Morjan
,
I.
, and
Dumitrache
,
F.
,
2011
, “
Experimental Study of the Thermal Performance of Thermosyphon Heat Pipe Using Iron Oxide Nanoparticles
,”
Int. J. Heat Mass Transfer
,
54
(
1
), pp.
656
661
.
8.
Asirvatham
,
L. G.
,
Nimmagadda
,
R.
, and
Wongwises
,
S.
,
2013
, “
Operational Limitations of Heat Pipes With Silver-Water Nanofluids
,”
ASME J. Heat Transfer
,
135
(
11
), p.
11011
.
9.
Kim
,
H. J.
,
Lee
,
S. H.
,
Kim
,
S. B.
, and
Jang
,
S. P.
,
2016
, “
The Effect of Nanoparticle Shape on the Thermal Resistance of a Flat-Plate Heat Pipe Using Acetone-Based Al2O3 Nanofluids
,”
Int. J. Heat Mass Transfer
,
92
, pp.
572
577
.
10.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
,
2001
, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
,
79
(
14
), pp.
2252
2254
.
11.
Assael
,
M.
,
Chen
,
C. F.
,
Metaxa
,
I.
, and
Wakeham
,
W. A.
,
2004
, “
Thermal Conductivity of Suspensions of Carbon Nanotubes in Water
,”
Int. J. Thermophys.
,
25
(
4
), pp.
971
985
.
12.
Xue
,
H. S.
,
Fan
,
J. R.
,
Hu
,
Y. C.
,
Hong
,
R. H.
, and
Cen
,
K. F.
,
2006
, “
The Interface Effect of Carbon Nanotube Suspension on the Thermal Performance of a Two-Phase Closed Thermosyphon
,”
J. Appl. Phys.
,
100
(
10
), p.
104909
.
13.
Amrollahi
,
A.
,
Hamidi
,
A. A.
, and
Rashidi
,
A. M.
,
2008
, “
The Effects of Temperature, Volume Fraction and Vibration Time on the Thermo-Physical Properties of a Carbon Nanotube Suspension (Carbon Nanofluid)
,”
Nanotechnology
,
19
(
31
), p.
315701
.
14.
Park
,
K. J.
,
Jung
,
D.
, and
Shim
,
S. E.
,
2009
, “
Nucleate Boiling Heat Transfer in Aqueous Solutions With Carbon Nanotubes up to Critical Heat Fluxes
,”
Int. J. Multiphase Flow
,
35
(
6
), pp.
525
532
.
15.
Liu
,
Z. H.
, and
Lu
,
L.
,
2009
, “
Thermal Performance of Axially Microgrooved Heat Pipe Using Carbon Nanotube Suspensions
,”
AIAA J. Thermophys. Heat Transfer
,
23
(
1
), pp.
170
175
.
16.
Liu
,
Z. H.
,
Yang
,
X. F.
, and
Guo
,
G. L.
,
2010
, “
Influence of Carbon Nanotube Suspension on the Thermal Performance of a Miniature Thermosyphon
,”
Int. J. Heat Mass Transfer
,
53
(
9
), pp.
1914
1920
.
17.
Kathiravan
,
R.
,
Kumar
,
R.
,
Gupta
,
A.
,
Chandra
,
R.
, and
Jain
,
P. K.
,
2011
, “
Pool Boiling Characteristics of Multiwalled Carbon Nanotube (CNT) Based Nanofluids Over a Flat Plate Heater
,”
Int. J. Heat Mass Transfer
,
54
(
5
), pp.
1289
1296
.
18.
Walvekar
,
R.
,
Faris
,
I. A.
, and
Khalid
,
M.
,
2012
, “
Thermal Conductivity of Carbon Nanotube Nanofluid—Experimental and Theoretical Study
,”
Heat Transfer Asian Res.
,
41
(
2
), pp.
145
163
.
19.
Park
,
S. S.
, and
Kim
,
N. J.
,
2014
, “
A Study on the Characteristics of Carbon Nanofluid for Heat Transfer Enhancement of Heat Pipe
,”
Renewable Energy
,
65
(5), pp.
123
129
.
20.
Tanshen
,
M. R.
,
Munkhbayar
,
B.
,
Nine
,
M. J.
,
Chung
,
H.
, and
Jeong
,
H.
,
2013
, “
Effect of Functionalized MWCNTs/Water Nanofluids on Thermal Resistance and Pressure Fluctuation Characteristics in Oscillating Heat Pipe
,”
Int. Commun. Heat Mass Transfer
,
48
(11), pp.
93
98
.
21.
Sadri
,
R.
,
Ahmadi
,
G.
,
Togun
,
H.
,
Dahari
,
M.
,
Kazi
,
S. N.
,
Sadeghinezhad
,
E.
, and
Zubir
,
N.
2014
, “
An Experimental Study on Thermal Conductivity and Viscosity of Nanofluids Containing Carbon Nanotubes
,”
Nanoscale Res. Lett.
,
9
(
1
), p. 9-151.
22.
Xing
,
M.
,
Yu
,
J.
, and
Wang
,
R.
,
2015
, “
Thermo-Physical Properties of Water-Based Single-Walled Carbon Nanotube Nanofluid as Advanced Coolant
,”
Appl. Therm. Eng.
,
87
, pp.
344
351
.
23.
Li
,
Q. M.
,
Zou
,
J.
,
Yang
,
Z.
,
Duan
,
Y. Y.
, and
Wang
,
B. X.
,
2011
, “
Visualization of Two-Phase Flows in Nanofluid Oscillating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
133
(
5
), p.
052901
.
24.
Do
,
K. H.
,
Ha
,
H. J.
, and
Jang
,
S. P.
,
2010
, “
Thermal Resistance of Screen Mesh Wick Heat Pipes Using the Water-Based Al2O3 Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
25
), pp.
5888
5894
.
25.
Ghanbarpour
,
M.
,
Nikkam
,
N.
,
Khodabandeh
,
R.
, and
Toprak
,
M. S.
,
2015
, “
Thermal Performance of Inclined Screen Mesh Heat Pipes Using Silver Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
67
, pp.
14
20
.
26.
Kim
,
K. M.
, and
Bang
,
I. C.
,
2016
, “
Effects of Graphene Oxide Nanofluids on Heat Pipe Performance and Capillary Limits
,”
Int. J. Thermal Sci.
,
100
, pp.
346
356
.
You do not currently have access to this content.