The hydrodynamic and thermal characteristics of electroosmotic and pressure-driven flows of power-law fluids are examined in a semicircular microchannel under the constant wall heat flux condition. For sufficiently large values of the electrokinetic radius, the Debye length is thin; the active flow within the electric double layer (EDL) drags the rest of the liquid due to frictional forces arising from the fluid viscosity, and consequently a plug-like velocity profile is attained. The velocity ratio can affect the pure electrokinetic flow as well as the flow rate depending on the applied pressure gradient direction. Since the effective viscosity of shear-thinning fluids near the wall is quite small compared to the shear-thickening fluids, the former exhibits higher dimensionless velocities than the later close to the wall; the reverse is true at the middle section. Poiseuille number increases with increasing the flow behavior index and/or the electrokinetic radius. Due to the comparatively stronger axial advection and radial diffusion in shear-thinning fluids, better temperature uniformity is achieved in the channel. Reduction of Nusselt number continues as far as the fully developed region where it remains unchanged; as the electrokinetic radius tends to infinity, Nusselt number approaches a particular value (not depending on the flow behavior index).

References

1.
Bruus
,
H.
,
2008
,
Theoretical Microfluidics
,
Oxford University Press
, New York.
2.
Nguyen
,
N. T.
, and
Wereley
,
S. T.
,
2006
,
Fundamentals and Applications of Microfluidics
,
Artech House
, Boston, MA.
3.
Tabeling
,
P.
,
2005
,
Introduction to Microfluidics
,
Oxford University Press
, New York.
4.
Arulanandam
,
S.
, and
Li
,
D.
,
2000
, “
Liquid Transport in Rectangular Microchannels by Electro-Osmotic Pumping
,”
Colloids Surf. A
,
161
(
1
), pp.
89
102
.
5.
Dutta
,
P.
, and
Beskok
,
A.
,
2001
, “
Analytical Solution of Combined Electroosmotic/Pressure Driven Flows in Two-Dimensional Straight Channels: Finite Debye Layer Effects
,”
Anal. Chem
,
73
(
9
), pp.
1979
1986
.
6.
Kang
,
Y. J.
,
Yang
,
C.
, and
Huang
,
X. Y.
,
2002
, “
Dynamic Aspects of Electroosmotic Flow in a Cylindrical Microcapillary
,”
Int. J. Eng. Sci.
,
40
(
20
), pp.
2203
2221
.
7.
Tsao
,
H. K.
,
2000
, “
Electroosmotic Flow Through an Annulus
,”
J. Colloid Interface Sci.
,
225
(
1
), pp.
247
250
.
8.
Erickson
,
D.
, and
Li
,
D.
,
2003
, “
Analysis of Alternating Current Electroosmotic Flows in a Rectangular Microchannel
,”
Langmuir
,
19
(
13
), pp.
5421
5430
.
9.
Dutta
,
P.
, and
Beskok
,
A.
,
2001
, “
Analytical Solution of Time Periodic Electroosmotic Flows: Analogies to Stokes Second Problem
,”
Anal. Chem.
,
73
(
21
), pp.
5097
5102
.
10.
Green
,
N. G.
,
Ramos
,
A.
,
Gonzalez
,
A.
,
Morgan
,
H.
, and
Castellanos
,
A.
,
2000
, “
Fluid Flow Induced by Non-Uniform AC Electric Fields in Electrolytes on Microelectrodes I: Experimental Measurements
,”
Phys. Rev. E
,
61
(
4
), pp.
4011
4018
.
11.
Gonzalez
,
A.
,
Ramos
,
A.
,
Green
,
N. G.
,
Castellanos
,
A.
, and
Morgan
,
H.
,
2000
, “
Fluid Flow Induced by Non-Uniform AC Electric Fields in Electrolytes on Microelectrodes—Part II: A Linear Double Layer Analysis
,”
Phys. Rev. E
,
61
(
4
), pp.
4019
4028
.
12.
Brown
,
A. B. D.
,
Smith
,
C. G.
, and
Rennie
,
A. R.
,
2002
, “
Pumping of Water With an AC Electric Field Applied to Asymmetric Pairs of Microelectrodes
,”
Phys. Rev. E
,
63
(
1 Pt 2
), p.
016305
.
13.
Moghadam
,
A. J.
,
2012
, “
An Exact Solution of AC Electro-Kinetic-Driven Flow in a Circular Micro-Channel
,”
Eur. J. Mech. B
,
34
, pp.
91
96
.
14.
Moghadam
,
A. J.
,
2013
, “
Exact Solution of AC Electro-Osmotic Flow in a Microannulus
,”
ASME J. Fluids Eng.
,
135
(
9
), p.
091201
.
15.
Moghadam
,
A. J.
,
2014
, “
Effect of Periodic Excitation on Alternating Current Electroosmotic Flow in a Microannular Channel
,”
Eur. J. Mech. B
,
48
, pp.
1
12
.
16.
Moghadam
,
A. J.
, and
Akbarzadeh
,
P.
,
2016
, “
Time-Periodic Electroosmotic Flow of Non-Newtonian Fluids in Microchannels
,”
IJE Trans. B
,
29
(
5
), pp.
736
744
.
17.
Moghadam
,
A. J.
, and
Akbarzadeh
,
P.
,
2017
, “
Non-Newtonian Fluid Flow Induced by Pressure Gradient and Time-Periodic Electroosmosis in a Microtube
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
12
), pp.
5015
5025
.
18.
Moghadam
,
A. J.
,
2016
, “
Two-Fluid Electrokinetic Flow in a Circular Microchannel
,”
Int. J. Eng., Trans. A
,
29
(
10
), pp.
1469
1477
.
19.
Stiles
,
T.
,
Fallon
,
R.
,
Vestad
,
T.
, and
Oakey
,
J.
,
2005
, “
Hydrodynamic Focusing for Vacuum-Pumped Microfluidics
,”
Microfluid. Nanofluid.
,
1
(
3
), pp.
280
283
.
20.
Fu
,
L. M.
,
Yang
,
R. J.
, and
Lee
,
G. B.
,
2003
, “
Electrokinetic Focusing Injection Methods on Microfluidic Devices
,”
Anal. Chem.
,
75
(
8
), pp.
1905
1910
.
21.
Sarabandi
,
A. H.
, and
Moghadam
,
A. J.
, “
Thermal Analysis of Power-Law Fluid Flow in a Circular Microchannel
,”
ASME J. Heat Transfer
,
139
(
3
), p.
032401
.
22.
Mohammadi
,
M. R.
, and
Moghadam
,
A. J.
,
2015
, “
Heat Transfer and Entropy Generation Analysis of Bingham Plastic Fluids in Circular Microchannels
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
4
), p.
041019
.
23.
Sarabandi
,
A. H.
, and
Moghadam
,
A. J.
,
2017
, “
Slip Velocity in Flow and Heat Transfer of Non-Newtonian Fluids in Microchannels
,”
Int. J. Eng., Trans. A
,
30
(
7
), pp.
1054
1065
.
24.
Moghadam
,
A. J.
,
2015
, “
Thermal Characteristics of Time-Periodic Electroosmotic Flow in a Circular Microchannel
,”
Heat Mass Transfer
,
51
(
10
), pp.
1461
1473
.
25.
Moghadam
,
A. J.
,
2016
, “
Exact Solution of Electroviscous Flow and Heat Transfer in a Semi-Annular Microcapillary
,”
ASME J. Heat Transfer
,
138
(
1
), p.
011702
.
26.
Moghadam
,
A. J.
,
2013
, “
Electrokinetic-Driven Flow and Heat Transfer of a Non-Newtonian Fluid in a Circular Microchannel
,”
ASME J. Heat Transfer
,
135
(
2
), p.
021705
.
27.
Bharti
,
R. P.
,
Harvie
,
D. J. E.
, and
Davidson
,
M. R.
,
2009
, “
Electroviscous Effects in Steady Fully Developed Flow of a Power-Law Liquid Through a Cylindrical Microchannel
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
804
811
.
28.
Dehkordi
,
A. M.
, and
Mohammadi
,
A. A.
,
2009
, “
Transient Forced Convection With Viscous Dissipation to Power-Law Fluids in Thermal Entrance Region of Circular Ducts With Constant Wall Heat Flux
,”
Energy Convers. Manage
,
50
(
4
), pp.
1062
1068
.
29.
Shamshiri
,
M.
,
Khazaeli
,
R.
,
Ashrafizaadeh
,
M.
, and
Mortazavi
,
S.
,
2012
, “
Heat Transfer and Entropy Generation Analyses Associated With Mixed Electrokinetically Induced and Pressure-Driven Power-Law Microflows
,”
Energy
,
42
(
1
), pp.
157
169
.
30.
Chhabra
,
R. P.
, and
Richardson
,
J. F.
,
2008
,
Non-Newtonian Flow and Applied Rheology
,
Butterworth-Heinemann
,
Oxford, UK
.
You do not currently have access to this content.