In this study, the heat-blocking performance of intumescent coating under various combinations of external radiative and convective heat fluxes is investigated numerically. The results show that the temperature distribution and heat fluxes near the coating surface are significantly affected by the heat-source combination, and consequently, the thermal responses of coating are different. For the same magnitude of convective heat source, the higher flame temperature (lower heat convection coefficient) has larger thermal effect on coating response. For the same magnitude of heat source, the radiative heat source generates more thermal response of coating than the convective one. Moreover, if the external heat flux is not intense enough to cause large expansion ratio (2 < xL/L < 11) in 3600 s, the combination of heat source can significantly affect the substrate temperature and the total heat flux at the coating surface. However, if the expansion ratio is sufficiently large (xL/L > 11) at the quasi-steady-state (3600 s), the substrate temperature and the total heat flux are independent of the combination of heat source, which only affects the temperature and the radiative and convective heat fluxes near the coating surface (∼3 mm in this study).

References

1.
UL
,
2011
, “UL Standard Safety Rapid Rise Fire Tests of Protection Materials for Structural Steel,” 4th ed.,
Underwriters Laboratories Inc
., Northbrook, IL, Standard No.
UL 1709
.https://standards.globalspec.com/std/10147487/ul-1709
2.
Fry
,
Z.
,
2014
, “A Laboratory Scale Study of Intumescent Coatings for Protection of Building Structure Members From Fires,”
Master's thesis
, Case Western Reserve University, Cleveland, OH.https://etd.ohiolink.edu/!etd.send_file?accession=case1402055149&disposition=inline
3.
Zhang
,
F.
,
Zhang
,
J.
, and
Wang
,
Y.
,
2007
, “
Modeling Study on the Combustion of Intumescent Fire-Retardant Polypropylene
,”
Express Polym. Lett.
,
1
(
3
), pp.
157
165
.
4.
Koo
,
J. H.
,
1997
, “
Thermal Characteristics Comparison of Two Fire Resistant Materials
,”
J. Fire Sci.
,
15
(
3
), pp.
203
221
.
5.
Mesquita
,
L. M. R.
,
Piloto
,
P. A. G.
,
Vaz
,
M. A. P.
, and
Pinto
,
T. M. G.
,
2009
, “
Decomposition of Intumescent Coatings: Comparison Between a Numerical Method and Experimental Results
,”
Acta Polytech.
,
49
(1), pp.
60
65
.https://ojs.cvut.cz/ojs/index.php/ap/article/view/1095/927
6.
Koo
,
J. H.
,
1998
, “
Thermal Characterization of a Ceramic Intumescent Material
,”
Fire Technol.
,
34
(
1
), pp.
59
71
.
7.
Wang
,
Y.
,
Goransson
,
U.
,
Holmstedt
,
G.
, and
Omrane
,
A.
,
2005
, “
A Model for Prediction of Temperature in Steel Structure Protected by Intumescent Coating, Based on Tests in the Cone Calorimeter
,”
Fire Saf. Sci.
,
8
, pp.
235
246
.
8.
Calabrese
,
L.
,
Bozzoli
,
F.
,
Bochicchio
,
G.
,
Tessadri
,
B.
,
Vocale
,
P.
, and
Rainieri
,
S.
,
2015
, “
Parameter Estimation Approach to the Thermal Characterization of Intumescent Fire Retardant Paints
,”
J. Phy.: Conf. Ser.
,
655
, p. 012048.
9.
Anderson
,
C. E.
, Jr
., and
Wauters
,
D. K.
,
1984
, “
A Thermodynamic Heat Transfer Model for Intumescent Systems
,”
Int. J. Eng. Sci.
,
22
(
7
), pp.
881
889
.
10.
Chaboki
,
A.
,
Kneer
,
M. J.
,
Schneider
,
M. E.
, and
Koo
,
J. H.
,
1991
, “Experimental and Numerical Results for Thermo-Physical Properties and Thermal Response of a Fire-Retardant Polymer,” ASME HTD, pp. 1–9.
11.
Buckmaster
,
J.
,
Anderson
,
C. E.
, and
Nachman
,
A.
,
1986
, “
A Model for Intumescent Paints
,”
Int. J. Eng. Sci.
,
24
(
3
), pp.
263
276
.
12.
Shih
,
Y. C.
,
Cheung
,
F. B.
, and
Koo
,
J. H.
,
1998
, “
Theoretical Modeling of Intumescent Fire-Retardant Materials
,”
J. Fire Sci.
,
16
(
1
), pp.
46
71
.
13.
Di Blasi
,
C.
,
2004
, “
Modeling the Effects of High Radiative Heat Fluxes on Intumescent Material Decomposition
,”
J. Anal. Appl. Pyrolysis
,
71
(
2
), pp.
721
737
.
14.
Griffin
,
G. J.
,
2010
, “
The Modeling of Heat Transfer Across Intumescent Polymer Coatings
,”
Fire Saf. J.
,
28
(
3
), pp.
249
277
.
15.
Zhang
,
Y.
,
Wang
,
Y. C.
,
Bailey
,
C. G.
, and
Taylor
,
A. P.
,
2012
, “
Global Modelling of Fire Protection Performance of Intumescent Coating Under Different Cone Calorimeter Heating Conditions
,”
Fire Saf. J.
,
50
, pp.
51
62
.
16.
Staggs
,
J. E. J.
,
2010
, “
Thermal Conductivity Estimates of Intumescent Chars by Direct Numerical Simulation
,”
Fire Saf. J.
,
45
(
4
), pp.
228
237
.
17.
Hsu
,
S.-Y.
, 2017, “
Modelling of Heat Transfer in Intumescent Fire-Retardant Coating Under High Radiant Heat Source and Parametric Study on Coating Thermal Response
,”
ASME J. Heat Transfer
,
140
(3), p. 032701.
18.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
, 2nd ed.,
Academic Press
, San Diego, CA, p.
498
.
19.
Hsu
,
S.-Y.
,
Tien
,
J. S.
,
Takahashi
,
F.
, and
Olson
,
S.
,
2011
, “
Modeling Heat Transfer in Thin Fire Blanket Materials Under High External Heat Fluxes
,”
Fire Saf. Sci.
,
10
, pp.
973
986
.
You do not currently have access to this content.