Sensitivity information is often of interest in engineering applications (e.g., gradient-based optimization). Heat transfer problems frequently involve complicated geometries for which exact solutions cannot be easily derived. As such, it is common to resort to numerical solution methods such as the finite element method. The semi-analytic complex variable method (SACVM) is an accurate and efficient approach to computing sensitivities within a finite element framework. The method is introduced and a derivation is provided along with a detailed description of the algorithm which requires very minor changes to the analysis code. Three benchmark problems in steady-state heat transfer are studied including a nonlinear problem, an inverse shape determination problem, and a reliability analysis problem. It is shown that the SACVM is superior to the other methods considered in terms of computation time and sensitivity to perturbation size.

References

1.
Jin
,
W.
,
Dennis
,
B. H.
, and
Wang
,
B. P.
,
2010
, “
Improved Sensitivity Analysis Using a Complex Variable Semi-Analytical Method
,”
Struct. Multidiscip. Optim.
,
41
(
3
), pp.
433
439
.
2.
Hu
,
R.
,
Jameson
,
A.
, and
Wang
,
Q.
,
2012
, “
Adjoint-Based Aerodynamic Optimization of Supersonic Biplane Airfoils
,”
J. Aircr.
,
49
(
3
), pp.
802
814
.
3.
Sherman
,
L. L.
,
L. L.
, III
,
T
,
A. C.
,
Green
,
Newman
,
P. A.
,
Hou
,
G. W.
, and
Korivi
,
V. M.
,
1996
, “
First- and Second-Order Aerodynamic Sensitivity Derivatives Via Automatic Differentiation With Incremental Iterative Methods
,”
J. Comput. Phys.
,
129
(
2
), pp.
307
331
.
4.
Lyness
,
J. N.
, and
Mohler
,
C. B.
,
1967
, “
Numerical Differentiation of Analytic Functions
,”
SIAM J. Numer. Anal.
,
4
(
2
), pp.
202
210
.
5.
Lyness
,
J. N.
,
1968
, “
Differentiation Formulas for Analytic Functions
,”
Math. Comp
,
22
(
102
), pp.
352
362
.
6.
Squire
,
W.
, and
Trapp
,
G.
,
1998
, “
Using Complex Variables to Estimate Derivatives of Real Functions
,”
SIAM Rev.
,
40
(
1
), pp.
110
112
.
7.
Newman
,
J.
, III
,
Whitfield
,
D.
, and
Anderson
,
W.
,
1999
, “
A Step-Size Independent Approach for Multidisciplinary Sensitivity Analysis and Design Optimization
,”
AIAA
Paper No. AIAA-99-3101.https://arc.aiaa.org/doi/abs/10.2514/6.1999-3101
8.
Anderson
,
W. K.
,
Newman
,
J. C.
, and
Nielsen
,
E. J.
,
1999
, “Sensitivity Analysis for the Navier–Stokes Equations on Unstructured Meshes Using Complex Variables,”
AIAA
Paper No. AIAA-99-3294.
9.
Martins
,
J. R. R. A.
,
Sturdza
,
P.
, and
Alonso
,
J. J.
,
2003
, “
The Complex-Step Derivative Approximation
,”
ACM Trans. Math. Software
,
29
(
3
), pp.
245
262
.
10.
Wang
,
B. P.
, and
Apte
,
A. P.
,
2006
, “
Complex Variable Method for Eigensolution Sensitivity Analysis
,”
AIAA J.
,
44
(
12
), pp.
2958
2961
.
11.
Rodriguez
,
D.
,
2000
, “
A Multidisciplinary Optimization Method for Designing Inlets Using Complex Variables
,”
AIAA
Paper No. AIAA-2000-4875.
12.
Errico
,
R. M.
,
1997
, “
What Is an Adjoint Model?
,”
Bull. Am. Meteorol. Soc.
,
78
(
11
), pp.
2577
2591
.
13.
Plessix
,
R.-E.
,
2006
, “
A Review of the Adjoint-State Method for Computing the Gradient of a Functional With Geophysical Applications
,”
Geophys. J. Int.
,
167
(
2
), pp.
495
503
.
14.
Dowding
,
K. J.
, and
Blackwell
,
B. F.
,
2000
, “
Sensitivity Analysis for Nonlinear Heat Conduction
,”
ASME J. Heat Transfer
,
123
(
1
), pp.
1
10
.
15.
Cao
,
Y.
,
Li
,
S.
,
Petzold
,
L.
, and
Serban
,
R.
,
2003
, “
Adjoint Sensitivity Analysis for Differential-Algebraic Equations: The Adjoint DAE System and Its Numerical Solution
,”
SIAM J. Sci. Comput.
,
24
(
3
), pp.
1076
1089
.
16.
Barthelemy
,
B.
, and
Haftka
,
R. T.
,
1988
, “
Accuracy of the Semi-Analytical Method for Shape Sensitivity Calculation
,”
AIAA
Paper No. 88-2284.https://arc.aiaa.org/doi/10.2514/6.1988-2284
17.
Olhoff
,
N.
, and
Rasmussen
,
J.
,
1991
, “
Study of Inaccuracy in Semi-Analytical Sensitivity Analysis—A Model Problem
,”
Struct. Optim.
,
3
(
4
), pp.
203
213
.
18.
Cheng
,
G.
,
Gu
,
Y.
, and
Wang
,
X.
,
1990
, “
Improvement of Semi-Analytic Sensitivity Analysis and Mcads
,”
International Conference Engineering Optimization in Design Processes
, Karlsruhe, Germany, Sept. 3–4.
19.
Chang
,
G.
, and
Olhoff
,
N.
,
1991
, “
New Method of Error Analysis and Detection in Semi-Analytical Sensitivity Analysis
,”
NATO/DFDASI Berchtesgaden
, pp.
361
383
.
20.
Mlejnek
,
H.
,
1992
, “
Accuracy of Semi-Analytical Sensitivities and Its Improvement by the Natural Method
,”
Struct. Optim.
,
4
(
2
), pp.
128
131
.
21.
Oral
,
S.
,
1996
, “
An Improved Semianalytical Method for Sensitivity Analysis
,”
Struct. Optim.
,
11
(
1–2
), pp.
67
69
.
22.
Parente
,
E.
, and
Vaz
,
L. E.
,
2001
, “
Improvement of Semi-Analytical Design Sensitivities of Non-Linear Structures Using Equilibrium Relations
,”
Int. J. Numer. Methods Eng.
,
50
(
9
), pp.
2127
2142
.
23.
IEEE, 2008, “IEEE Standard for Floating-Point Arithmetic,” Institute of Electrical and Electronics Engineers, Piscataway, NJ, Standard No.
IEEE
754-2008.
24.
Zienkiewicz
,
O.
,
Taylor
,
R.
, and
Zhu
,
J.
,
2013
,
The Finite Element Method: Its Basis and Fundamentals
, 7th ed.,
Butterworth-Heinemann
,
Oxford, UK
.
25.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Numerical Optimization
, 2nd ed.,
Springer
, New York.
26.
Haldar
,
A.
, and
Mahadevan
,
S.
,
2000
,
Reliability Assessment Using Stochastic Finite Element Analysis
, 1st ed.,
Wiley
, New York.
You do not currently have access to this content.