This study aims to evaluate adiabatic and conjugate effusion cooling effectiveness of combustion chamber liner plate of gas turbines. Validation of the adiabatic model was done by comparing computational fluid dynamics (CFD) result with the experimental results obtained using the subsonic cascade tunnel facility available at Heat Transfer Lab of Council of Scientific and Industrial Research-National Aerospace Laboratories (CSIR-NAL). Computational simulation of the conjugate model is validated against published numerical results. Numerical simulation for the adiabatic cooling effectiveness is carried out for a 1:3 scaled up flat plate test geometry, while the actual flat plate geometry is considered for the conjugate cooling effectiveness analysis. The test plate has 11 rows of cooling holes, and the holes are arranged in staggered manner with each row containing eight holes. For both adiabatic and conjugate cases, the same mainstream conditions are maintained with the inlet temperature of 329 K, velocity of 20 m/s, density ratio 1.3. The coolant to mainstream blowing ratios (BRs) are maintained at 0.4, 1.15, and 1.6. The coolant temperature is 253 K with the flow rates are according to the BRs. Cooling effectiveness is obtained by using CFD simulation with ANSYS fluent package. From the comparison of adiabatic and conjugate results, it is found that conjugate model is giving superior cooling protection than the adiabatic model and effusion cooling effectiveness increases with increase in BR. Investigations on comparison of angle of injection holes show that, 30 deg model give maximum effusion cooling effectiveness as compared to 45 deg and 60 deg models.

References

1.
SunChao-Junhuang
,
W.-H.
, and
Mingmiao
,
C.-Y.
, Jr.
,
2009
, “
Numerical Study on the Effusion Cooling Performance Over the Walls of an Annular Burner
,”
Seventh International Conference on CFD in the Minerals and Process Industries
, Melbourne, Australia, Dec. 9–11.
2.
Hasann
,
R.
, and
Puthukkudi
,
A.
,
2013
, “
Numerical Study of Effusion Cooling on an Adiabatic Flat Plate
,”
Propul. Power Res.
,
2
(
4
), pp.
269
275
.
3.
Andreini
,
A.
,
Champion
,
J. L.
,
Facchini
,
B.
,
Mercier
,
E.
, and
Surace
,
M.
,
2006
, “
Advanced Liner Cooling Numerical Analysis for Low Emission Combustors
,”
25th International Congress of the Aeronautical Sciences
(
ICAS
), Hamburg, Germany, Sept. 3–8.http://icas.org/ICAS_ARCHIVE/ICAS2006/PAPERS/181.PDF
4.
Jingzhoua
,
Z.
,
Hao
,
X.
, and
Chengfeng
,
Y.
,
2009
, “
Numerical Study of Flow and Heat Transfer Characteristics of Impingement/Effusion Cooling
,”
Chin. J. Aeronaut.
,
22
(
4
), pp.
343
348
.
5.
Raj
,
D.
, and
Devaraj
,
K.
,
2013
, “
Numerical Heat Transfer Analysis of a Flat Plate Using Combined Jet, Impingement and Film Cooling, With Flow Patterns
,”
Int. J. Eng. Res. Technol.
,
2
(
11
), pp.
2278
0181
.https://www.ijert.org/download/6390/numerical-heat-transfer-analysis-of-a-flat-plate-using-combined-jet-impingement-and-film-cooling-with-flow-patterns
6.
Scrittore
,
J. J.
,
Thole
,
K. A.
, and
Burd
,
S. W.
,
2007
, “
Investigation of Velocity Profiles for Effusion Cooling of a Combustor Liner
,”
ASME J. Turbomach.
,
129
(
3
), pp.
518
526
.
7.
Bailey
,
J. C.
,
Intile
,
J.
,
Fric
,
T. F.
,
Tolpadi
,
A. K.
, and
Nirmalan
,
N. V.
,
2003
, “
Experimental and Numerical Study of Heat Transfer in a Gas Turbine Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
,
125
(
4
), pp.
994
1002
.
8.
Arcangeli
,
L.
,
Facchini
,
B.
,
Surace
,
M.
, and
Tarchi
,
L.
,
2008
,
ASME J. Turbomach.
,
130
(
1
), p.
011016
.
9.
Giridharababu
,
Y.
,
Ashok Babu
,
T. P.
, and
Anbalaganm Meena
,
R.
,
2014
, “
Experimental and Numerical Investigation of Adiabatic Film Cooling Effectiveness Over the Compound Angled Gas Turbine Blade Leading Edge Model
,”
Int. J. Mech. Eng. Technol.
,
5
(9), pp.
91
100
.http://www.iaeme.com/MasterAdmin/UploadFolder/EXPERIMENTAL%20AND%20NUMERICAL%20INVESTIGATION%20OF%20ADIABATIC%20FILM%20COOLING%20EFFECTIVENESS%20OVER%20THE%20COMPOUND%20ANGLED/EXPERIMENTAL%20AND%20NUMERICAL%20INVESTIGATION%20OF%20ADIABATIC%20FILM%20COOLING%20EFFECTIVENESS%20OVER%20THE%20COMPOUND%20ANGLED.pdf
10.
Spring
,
S.
,
Lauffer
,
D.
,
Weigand
,
B.
, and
Hase
,
M.
,
2010
, “
Experimental and Numerical Investigation of Impingement Cooling in a Combustor Liner Heat Shield
,”
ASME J. Turbomach.
,
132
(
1
), p.
011003
.
11.
Elsayed
,
A. M.
,
Owis
,
F. M.
, and
Madbouli Abdel Rahman
,
M.
,
2014
, “
Numerical Computation and Optimization of Turbine Blade Film Cooling
,”
Adv. Mech. Eng.
,
2014
, p.
528031
.https://www.researchgate.net/publication/264003575_Numerical_Computation_and_Optimization_of_Turbine_Blade_Film_Cooling
12.
Bernhard Gustafsson
,
K. M.
, and
Gunnar Johansson
,
T.
,
2001
, “
An Experimental Study of Surface Temperature Distribution on Effusion-Cooled Plates
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
308
316
.
13.
Liu
,
X.
, and
Zheng
,
H.
,
2015
, “
Influence of Deflection Hole Angle on Effusion Cooling in a Real Combustion Chamber Condition
,”
Therm. Sci.
,
19
(
2
), pp.
645
656
.
14.
Silieti
,
M.
,
Kassab
,
A. J.
, and
Divo
,
E.
,
2009
, “
Film Cooling Effectiveness: Comparison of Adiabatic and Conjugate Heat Transfer CFD Models
,”
Int. J. Therm. Sci.
,
48
(
12
), pp.
2237
2248
.
15.
Pillai
,
V. T.
,
Jayakumar
,
J. S.
, and
Giridhara Babu
,
Y.
,
2014
, “
Numerical Investigation Effectiveness of Adiabatic Film Cooling of Gas Turbine Blades
,”
Int. J. Sci. Eng. Res.
,
5
(
7
), pp.
872
880
.https://www.ijser.org/researchpaper/Numerical-Investigation-Effectiveness-of-Adiabatic-Film-Cooling-of-Gas-Turbine-Blades.pdf
16.
Jose
,
N.
,
Jayakumar
,
J. S.
, and
Yepuri
,
G. B.
,
2015
, “
Numerical Investigation of Adiabatic Film Cooling Effectiveness Over a Flat Plate Model With Cylindrical Holes
,”
Procedia Eng.
,
127
, pp.
398
404
.
17.
Ignatious
,
I.
, and
Jayakumar
,
J. S.
,
2015
, “
Numerical Analysis of Impingement/Effusion Cooling Effectiveness on Flat Plates
,”
ASME
Paper No. GTINDIA2015-1319
.
18.
Menon
,
Y. K.
, and
Jayakumar
,
J. S.
,
2017
, “
Numerical Simulation to Investigate Effect of Downstream Grooves on Film Cooling Effectiveness of Gas Turbine Blades
,”
Int. J. Mech. Eng. Technol.
,
8
(1), pp.
304
316
.http://www.iaeme.com/MasterAdmin/uploadfolder/IJMET_08_01_033/IJMET_08_01_033.pdf
19.
Arjun
,
C. K.
,
Giridhara Babu
,
Y.
,
Felix
,
J.
, and
Jayakumar
,
J. S.
,
2016
, “
Experimental and Numerical Investigation of Effusion Cooling Effectiveness Over Combustion Chamber Liner Plate
,”
ASME Paper No. GT2016-57035
.
20.
Arjun
,
C. K.
,
Giridhara Babu
,
Y.
,
Felix
,
J.
, and
Jayakumar
,
J. S.
,
2016
, “
Effect of Hole Angle on Effusion Cooling Effectiveness Over Combustion Chamber Liner Flat Plate
,”
Asian Congress on Gas Turbines
, Mumbai, India, Nov. 14–16, Paper No. ACGT2016-70.
21.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
559
.
22.
Yepuri
,
G.
,
Jesuraj
,
B.
,
Batch
,
F.
, and
Venkataraman
,
S. K.
,
2015
, “
Experimental Investigation of Adiabatic Film Cooling Effectiveness Over a Circular Fan and Laidback Fan Shaped Hole Flat Plate Test Models
,”
ASME
Paper No. GTINDIA2015-1394
.
23.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
24.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2016
, “
Turbulent Heat Transfer Enhancement in an Air-to-Water Heat Exchanger
,”
Proc. Inst. Mech. Eng., Part E
,
231
(
6
), pp.
1235
1248
.
You do not currently have access to this content.