In this work, the equilibrium molecular dynamics (MD) simulation combined with the Green–Kubo method is employed to calculate the thermal conductivity and investigate the impact of the liquid layer around the solid nanoparticle (NP) in enhancing thermal conductivity of nanofluid (argon–copper), which contains the liquid argon as a base fluid surrounding the spherical or cylindrical NPs of copper. First, the thermal conductivity is calculated at temperatures 85, 85.5, 86, and 86.5 K and for different volume fractions ranging from 4.33% to 11.35%. Second, the number ΔN of argon atoms is counted in the liquid layer formed at the solid–liquid interface with the thickness of Δr = 0.3 nm around the NP. Finally, the number density n of argon atoms in this layer formed is calculated in all cases. Also, the results for spherical and cylindrical NPs are compared with one another. It is observed that the thermal conductivity of the nanofluid increased with the increasing volume fraction and the number ΔN. Likewise, the thermal conductivity of nanofluid containing spherical NPs is higher than that of nanofluid containing cylindrical NPs. Furthermore, the number density n of argon atoms near the surface of spherical NPs is higher than that of argon atoms attached in the curved surface of cylindrical NPs. As a result, the liquid layer around the solid NP has been considered one of the mechanisms responsible contributing to the thermal conductivity enhancement in nanofluids.

References

1.
Choi
,
S. U. S.
, and Eastman, J. A.,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME Publ. Fed.
,
231
, p.
99
.https://www.osti.gov/biblio/196525
2.
Saidur
,
R.
,
Leong
,
K. Y.
, and
Mohammad
,
H. A.
,
2011
, “
A Review on Applications and Challenges of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1646
1668
.
3.
Loulijat
,
H.
,
Zerradi
,
H.
,
Dezairi
,
A.
,
Ouaskit
,
S.
,
Mizani
,
S.
, and
Rhayt
,
F.
,
2015
, “
Effect of Morse Potential as Model of Solid–Solid Inter-Atomic Interaction on the Thermal Conductivity of Nanofluids
,”
Adv. Powder Technol.
,
26
(
1
), pp.
180
187
.
4.
Cui
,
W.
,
Shen
,
Z.
,
Yang
,
J.
,
Wu
,
S.
, and
Bai
,
M.
,
2014
, “
Influence of Nanoparticle Properties on the Thermal Conductivity of Nanofluids by Molecular Dynamics Simulation
,”
RSC Adv.
,
4
(
98
), p.
55580
.
5.
Zerradi
,
H.
,
Ouaskit
,
S.
,
Dezairi
,
A.
,
Loulijat
,
H.
, and
Mizani
,
S.
,
2014
, “
New Nusselt Number Correlations to Predict the Thermal Conductivity of Nanofluids
,”
Adv. Powder Technol.
,
25
(
3
), pp.
1124
1131
.
6.
Xie
,
H.
,
Lee
,
H.
,
Youn
,
W.
, and
Choi
,
M.
,
2003
, “
Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities
,”
Appl. Phys. Lett.
,
94
, pp.
4967
4971
.
7.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
(
6
), p.
718
.
8.
Xuan
,
Y.
, and
Li
,
Q.
,
2000
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
,
21
(
1
), pp.
58
64
.
9.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
2002
, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
855
863
.
10.
Xue
,
Q. Z.
,
2003
, “
Model for Effective Thermal Conductivity of Nanofluids
,”
Phys. Lett. A
,
307
(
5–6
), pp.
313
317
.
11.
Yu
,
W.
, and
Choi
,
S. U. S.
,
2003
, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
,
5
(1–2), p.
171
.
12.
Maxwell
,
J. C.
,
1881
,
On Electricity and Magnetism
, 2nd ed., Vol.
1
,
Clarendron
,
Oxford, UK
.
13.
Sen Gupta
,
S.
,
Manoj Siva
,
V.
,
Krishnan
,
S.
,
Sreeprasad
,
T. S.
,
Singh
,
P. K.
,
Pradeep
,
T.
, and
Das
,
S. K.
,
2011
, “
Thermal Conductivity Enhancement of Nanofluids Containing Graphene Nanosheets
,”
J. Appl. Phys.
,
110
(
8
), p.
084302
.
14.
Lennard-Jones
,
J. E.
, and
Devonshire
,
A. F.
,
1937
, “
Critical Phenomena in Gases—I
,”
Proc. R. Soc. London
,
163
(
912
), pp.
53
70
.
15.
Allen
,
M.
, and
Tildesley
,
D. J.
,
1987
,
Computer Simulations of Liquids
,
Clarendon Press
,
Oxford, UK
.
16.
Yu
,
J.
, and
Amar
,
J. G.
,
2002
, “
Effects of Short-Range Attraction in Metal Epitaxial Growth
,”
Phys. Rev. Lett.
,
89
(
28 Pt. 1
), p.
286103
.
17.
Foiles
,
S. M.
,
Baskes
,
M. I.
, and
Daw
,
M. S.
,
1986
, “
Embedded-Atom-Method Functions for the Fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys
,”
Phys. Rev. B
,
33
(
12
), p.
7983
.
18.
Grigoryan
,
V. G.
,
Alamanova
,
D.
, and
Springborg
,
M.
,
2005
,
Eur. Phys. J. D
,
34
, p.
187
.
19.
Grigoryan
,
V. G.
,
Alamanova
,
D.
, and
Springborg
,
M.
,
2006
, “
Structure and Energetics of Cu N Clusters With (2 ⩽ N ⩽ 150): An Embedded-Atom-Method Study
,”
Phys. Rev. B
,
73
, p.
115415
.
20.
Grigoryan
,
V. G.
, and
Springborg
,
M.
,
2004
, “
Structural and Energetic Properties of Nickel Clusters: 2 ⩽ N ⩽ 150
,”
Phys. Rev. B
,
70
, p.
205415
.
21.
Loulijat
,
H.
, Zerradi, H., Mizani, S., mehdi Achhal, E., Dezairi, A., and Ouaskit, S.,
2015
, “
The Behavior of the Thermal Conductivity Near the Melting Temperature of Copper Nanoparticle
,”
J. Mol. Liq.
,
211
, pp.
695
704
.
22.
Sofos
,
F.
,
Karakasidis
,
T.
, and
Liakopoulos
,
A.
,
2009
, “
Transport Properties of Liquid Argon in Krypton Nanochannels: Anisotropy and Non-Homogeneity Introduced by the Solid Walls
,”
Int. J. Heat Mass Transfer
,
52
(3–4), pp. 735–743.
23.
McQuarrie
,
D. A.
,
2000
,
Statistical Mechanics
,
University Science Books
,
Sausalito, CA
.
24.
Sarkar
,
S.
, and
Selvam
,
R. P.
,
2007
, “
Molecular Dynamics Simulation of Effective Thermal Conductivity and Study of Enhanced Thermal Transport Mechanism in Nanofluids
,”
J. Appl. Phys.
,
102
(
7
), p.
074302
.
25.
Vogelsang
,
R.
, and
Hoheisel
,
C.
,
1987
, “
Thermal Conductivity of a Binary-Liquid Mixture Studied by Molecular Dynamics With Use of Lennard-Jones Potentials
,”
Phys. Rev. A
,
35
(
8
), p.
3487
.
26.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys
,
117
(
1
), pp. 1–19.
27.
Stukowski
,
A.
,
2009
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO–The Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
.
28.
Yarnell
,
J. L.
,
Katz
,
M. J.
,
Wenzel
,
R. G.
, and
Koenig
,
S. H.
,
1973
, “
Structure Factor and Radial Distribution Function for Liquid Argon at 85 K
,”
Phys. Rev. A
,
7
(
6
), p.
2130
.
29.
Müller-Plathe
,
F.
,
1997
, “
A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity
,”
J. Chem. Phys.
,
106
, p.
6082
.
30.
Michaelides
,
E. E.
,
2014
,
Nanofluidics—Thermodynamic and Transport Properties
,
Springer
,
New York
.
31.
Li
,
L.
,
Zhang
,
Y.
,
Ma
,
H.
, and
Yang
,
M.
,
2008
, “
An Investigation of Molecular Layering at the Liquid-Solid Interface in Nanofluids by Molecular Dynamics Simulation
,”
Phys. Lett. A
,
372
(
25
), pp.
4541
4544
.
32.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.
You do not currently have access to this content.