A method to simultaneously measure two-dimensional temperature and emissivity distributions on high-temperature diffuse surfaces is developed using an auxiliary light source. The high-temperature diffuse surface is irradiated from the hemispherical space with the auxiliary light source switched “on” or “off.” Two images of the effective radiation intensity are obtained in quick succession for the two states to determine the temperature and emissivity distributions. The measurement method and uncertainty models show that the effect of the unknown emissivity on the accuracy of the temperature field measurement can be eliminated. The optical pyrometer is a color charge coupled device (CCD) sensor with a quartz lamp array used as the auxiliary light source to illustrate the measurement method. An oxidized W–Ni–Fe alloy sample is heated at high temperatures of 600–1000 °C by a 700 W induction-heating device. The distributions of the effective radiation intensities from the sample surface during the “on” and “off” states of the lamp array are measured in the three color channels (R, G, and B channels) to calculate the temperature and emissivity distributions. The temperature measurement uncertainties are less than 4 °C for a temperature range of 600–900 °C. The temperature measurements are experimentally validated by the thermocouple method only with a small temperature difference. The emissivities calculated from the three color channels are very close with a range of 0.855–0.957. The relative uncertainties in the emissivities for channels R and G are less than 2.0%, while the relative uncertainty for channel B data was higher at 2.8% and 7.5% due to lower measurement signals in channel B. This analysis may provide a useful method for measuring the temperatures of high-temperature diffuse surfaces by successfully compensating for the effects of unknown or changing emissivities.

References

1.
Gathers
,
G. R.
,
1992
, “
Analysis of Multiwavelength Pyrometry Using Nonlinear Chi-Square Fits and Monte Carlo Methods
,”
Int. J. Thermophys.
,
13
(
3
), pp.
539
554
.
2.
Madura
,
H.
,
Piatkowski
,
T.
, and
Powiada
,
E.
,
2004
, “
Multispectral Precise Pyrometer for Measurement of Seawater Surface Temperature
,”
Infrared Phys. Technol.
,
46
(
1–2
), pp.
69
73
.
3.
Estevadeordal
,
J.
,
Wang
,
G. H.
,
Nirmalan
,
N.
,
Wang
,
A. Q.
,
Harper
,
S. P.
, and
Rigney
,
J. D.
,
2013
, “
Multicolor Techniques for Identification and Filtering of Burst Signals in Jet Engine Pyrometers
,”
ASME J. Turbomach.
,
136
(
3
), p.
031004
.
4.
Duvaut
,
T.
,
2008
, “
Comparison Between Multiwavelength Infrared and Visible Pyrometry: Application to Metals
,”
Infrared Phys. Technol.
,
51
(
4
), pp.
292
299
.
5.
Fu
,
T. R.
,
Wang
,
Z.
, and
Cheng
,
X. F.
,
2010
, “
Temperature Measurements of Diesel Fuel Combustion With Multicolor Pyrometry
,”
ASME J. Heat Transfer
,
132
(
5
), p.
051602
.
6.
Fu
,
T. R.
,
Tan
,
P.
,
Pang
,
C. H.
,
Zhao
,
H.
, and
Shen
,
Y.
,
2011
, “
Fast Fiber-Optic Multi-Wavelength Pyrometer
,”
Rev. Sci. Instrum.
,
82
(
6
), p.
064902
.
7.
Fu
,
T. R.
,
Liu
,
J. F.
,
Duan
,
M. H.
, and
Zong
,
A. Z.
,
2014
, “
Temperature Measurements Using Multicolor Pyrometry in Thermal Radiation Heating Environments
,”
Rev. Sci. Instrum.
,
85
(
4
), p.
044901
.
8.
Araujo
,
A.
,
Silvano
,
S.
, and
Martins
,
N.
,
2014
, “
Monte Carlo Uncertainty Simulation of Surface Emissivity at Ambient Temperature Obtained by Dual Spectral Infrared Radiometry
,”
Infrared Phys. Technol.
,
67
, pp.
131
137
.
9.
Araujo
,
A.
, and
Martins
,
N.
,
2015
, “
Monte Carlo Simulations of Ambient Temperature Uncertainty Determined by Dual-Band Pyrometry
,”
Meas. Sci. Technol.
,
26
, p.
085016
.
10.
Araujo
,
A.
,
2016
, “
Analysis of Multi-Band Pyrometry for Emissivity and Temperature Measurements of Gray Surfaces at Ambient Temperature
,”
Infrared Phys. Technol.
,
76
, pp.
365
74
.
11.
Araujo
,
A.
,
2017
, “
Multi-Spectral Pyrometry—A Review
,”
Meas. Sci. Technol.
,
28
(
8
), p.
082002
.
12.
Hwang
,
J. H.
,
Kompella
,
S.
,
Chandrasekar
,
S.
, and
Farris
,
T. N.
,
2003
, “
Measurement of Temperature Field in Surface Grinding Using Infra-Red (IR) Imaging System
,”
ASME J. Tribol.
,
125
(
2
), pp.
377
383
.
13.
Ranc
,
N.
,
Pina
,
V.
,
Sutter
,
G.
, and
Philippon
,
S.
,
2004
, “
Temperature Measurement by Visible Pyrometry: Orthogonal Cutting Application
,”
ASME J. Heat Transfer
,
126
(
6
), pp.
931
936
.
14.
Simmons
,
D. F.
,
Fortgang
,
C. M.
, and
Holtkamp
,
D. B.
,
2005
, “
Using Multispectral Imaging to Measure Temperature Profiles and Emissivity of Large Thermionic Dispenser Cathodes
,”
Rev. Sci. Instrum.
,
76
(
4
), p.
044901
.
15.
Jackson
,
A. W.
, and
Gossard
,
A. C.
,
2007
, “
Thermal Imaging of Wafer Temperature in MBE Using a Digital Camera
,”
J. Crystal Growth
,
301–302
, pp.
105
108
.
16.
Payri
,
F.
,
Pastor
,
J. V.
,
García
,
J. M.
, and
Pastor
,
J. M.
,
2007
, “
Contribution to the Application of Two-Colour Imaging to Diesel Combustion
,”
Meas. Sci. Technol.
,
18
(
8
), pp.
2579
2598
.
17.
Lu
,
G.
,
Yan
,
Y.
,
Riley
,
G.
, and
Bheemul
,
H. C.
,
2002
, “
Concurrent Measurement of Temperature and Soot Concentration of Pulverized Coal Flames
,”
IEEE Trans. Instrum. Meas.
,
51
(
5
), pp.
990
995
.https://ieeexplore.ieee.org/abstract/document/1174029/
18.
Lu
,
H.
,
Ip
,
L.
,
Mackrory
,
A.
,
Werrett
,
L.
,
Scott
,
J.
,
Tree
,
D.
, and
Baxter
,
L.
,
2009
, “
Particle Surface Temperature Measurements With Multicolor Band Pyrometry
,”
AIChE J.
,
55
(
1
), pp.
243
255
.
19.
Luo
,
Z. X.
, and
Zhou
,
H. C.
,
2007
, “
A Combustion-Monitoring System With 3-D Temperature Reconstruction Based on Flame-Image Processing Technique
,”
IEEE Trans. Inst. Meas.
,
56
(
5
), pp.
1877
1882
.
20.
Fu
,
T. R.
,
Zhao
,
H.
,
Zeng
,
J.
,
Wang
,
Z.
,
Zhong
,
M. H.
, and
Shi
,
C. L.
,
2010
, “
Improvements of Three-Color Optical CCD-Based Pyrometer System
,”
Appl. Opt.
,
49
(
31
), pp.
5997
6005
.
21.
Fu
,
T. R.
,
Zhao
,
H.
,
Zeng
,
J.
,
Zhong
,
M. H.
, and
Shi
,
C. L.
,
2010
, “
Two-Color Optical CCD-Based Pyrometer Using a Two-Peak Filter
,”
Rev. Sci. Instrum.
,
81
(
12
), p.
124903
.
22.
Fu
,
T. R.
,
Liu
,
J. F.
, and
Tian
,
J. B.
,
2017
, “
VIS-NIR Multispectral Synchronous Imaging Pyrometer for High-Temperature Measurements
,”
Rev. Sci. Instrum.
,
88
(
6
), p.
064902
.
23.
Hernandez
,
D.
,
Olalde
,
G.
,
Beck
,
A.
, and
Milcent
,
E.
,
1995
, “
Bicolor Pyroreflectometer Using an Optical Fiber Probe
,”
Rev. Sci. Instrum.
,
66
(
12
), pp.
5548
5551
.
24.
Hernandez
,
D.
,
2005
, “
A Concept to Determine the True Temperature of Opaque Materials Using a Tricolor Pyroreflectometer
,”
Rev. Sci. Instrum.
,
76
(
2
), p.
024904
.
25.
Hernandez
,
D.
,
Netchaieff
,
A.
, and
Stein
,
A.
,
2009
, “
True Temperature Measurement on Metallic Surfaces Using a Two-Color Pyroreflectometer Method
,”
Rev. Sci. Instrum.
,
80
(
9
), p.
094903
.
26.
Gilblas
,
R.
,
Sentenac
,
T.
,
Hernandez
,
D.
, and
Le Maoult
,
Y.
,
2014
, “
Quantitative Temperature Field Measurements on a Non-Gray Multi-Materials Scene by Thermoreflectometry
,”
Infrared Phys. Technol.
,
66
, pp.
70
77
.
27.
Howell
,
J. R.
,
Siegel
., and
Pinar Menguc
,
R. M.
,
2010
,
Thermal Radiation Heat Transfer
, 5th ed.,
CRC Press
, Boca Raton, FL.
28.
Working Group 1 of JCGM
,
2008
, “
Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement
,” Joint Committee for Guides in Metrology, Report No.
JCGM 100:2008
.https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
You do not currently have access to this content.