Abstract

The effect of viscous heat dissipation (VHD) in raising the temperature field of incompressible oscillatory air flow is studied numerically. A threshold is established for when the viscous heat dissipation term in the thermal energy equation changes or does not change the temperature field for the case of oscillatory air flow in a tube connecting two reservoirs. This new criterion has not been specified clearly in earlier oscillatory flow research. According to the defined threshold and when VHD is important, the effect of dissipative bulk heating can be described by a proposed correlation in terms of Womersley number (Wo) and axial tidal displacement (ΔZ) of the oscillatory fluid. These results are determined using two-dimensional (2D) numerical simulations of laminar oscillatory air flow (Pr = 0.7) for different adiabatic unconductive tube-reservoirs' systems configurations over a wide range of oscillatory frequencies and tidal displacements. It is found that the low amount of fluid kinetic energy, which is converted into internal energy, is not sufficient to significantly heat up the fluid at a low rate of the viscous work. Therefore, the effect of viscous heat dissipation in oscillatory air flow can be ignored only below a specific limit of unsteadiness depending on Womersley number and axial tidal displacement. Also, the results showed that the VHD becomes more significant with increasing (Wo) and (ΔZ).

References

1.
Taylor
,
G.
,
1953
, “
Dispersion of Soluble Matter in Solvent Flowing Slowly Through a Tube
,”
Proc. R. Soc. A
,
219
(
1137
), pp.
186
203
.10.1098/rspa.1953.0139
2.
Chatwin
,
P. C.
,
Physics
,
T.
, and
Chatwin
,
P. C.
,
1975
, “
On the Longitudinal Dispersion of Passive Contaminant in Oscillatory Flows in Tubes
,”
J. Fluid Mech.
,
71
(
3
), pp.
513
527
.10.1017/S0022112075002716
3.
Watson
,
E. J.
,
1983
, “
Diffusion in Oscillatory Pipe Flow
,”
J. Fluid Mech.
,
133
, p.
233
.10.1017/S0022112083001883
4.
Kuosa
,
M.
,
Saari
,
K.
,
Kankkunen
,
A.
, and
Tveit
,
T. M.
,
2012
, “
Oscillating Flow in a Stirling Engine Heat Exchanger
,”
Appl. Therm. Eng.
,
45–46
, pp.
15
23
.10.1016/j.applthermaleng.2012.03.023
5.
Kurzweg
,
U. H.
, and
de Zhao
,
L.
,
1984
, “
Heat Transfer by High-Frequency Oscillations: A New Hydrodynamic Technique for Achieving Large Effective Thermal Conductivities
,”
Phys. Fluids
,
27
(
11
), pp.
2624
2627
.10.1063/1.864563
6.
Kurzweg
,
U. H.
,
1985
, “
Enhanced Heat Conduction in Fluids Subjected to Sinusoidal Oscillations
,”
ASME J. Heat Transfer
,
107
(
2
), p.
459
.10.1115/1.3247437
7.
Kurzweg
,
U. H.
,
1988
, “
Enhanced Diffusional Separation in Liquids by Sinusoidal Oscillations
,”
Sep. Sci. Technol.
,
23
(
1–3
), pp.
105
117
.10.1080/01496398808057637
8.
Zhang
,
J. G.
, and
Kurzeg
,
U. H.
,
1991
, “
Numerical Simulation of Time-Dependent Heat Transfer in Oscillating Pipe Flow
,”
J. Thermophys. Heat Transfer
,
5
(
3
), pp.
401
406
.10.2514/3.277
9.
Kaviany
,
M.
, and
Reckker
,
M.
,
1990
, “
Performance of a Heat Exchanger Based on Enhanced Heat Diffusion in Fluids by Oscillation: Experiment
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
56
63
.10.1115/1.2910364
10.
Kaviany
,
M.
,
1990
, “
Performance of a Heat Exchanger Based on Enhanced Heat Diffusion in Fluids by Oscillation: Analysis
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
49
55
.10.1115/1.2910363
11.
Su
,
Y.
,
Davidson
,
J. H.
, and
Kulacki
,
F. A.
,
2012
, “
Numerical Investigation of Fluid Flow and Heat Transfer of Oscillating Pipe Flows
,”
Int. J. Therm. Sci.
,
54
, pp.
199
208
.10.1016/j.ijthermalsci.2011.11.021
12.
Yin
,
D.
, and
Ma
,
H. B.
,
2013
, “
Analytical Solution of Oscillating Flow in a Capillary Tube
,”
Int. J. Heat Mass Transfer
,
66
, pp.
699
705
.10.1016/j.ijheatmasstransfer.2013.07.073
13.
Yu
,
J.-Y.
,
Lin
,
W.
, and
Zheng
,
X.-T.
,
2014
, “
Effect on the Flow and Heat Transfer Characteristics for Sinusoidal Pulsating Laminar Flow in a Heated Square Cylinder
,”
Heat Mass Transfer
,
50
(
6
), pp.
849
864
.10.1007/s00231-014-1294-4
14.
Wantha
,
C.
,
2016
, “
Effect and Heat Transfer Correlations of Finned Tube Heat Exchanger Under Unsteady Pulsating Flows
,”
Int. J. Heat Mass Transfer
,
99
, pp.
141
148
.10.1016/j.ijheatmasstransfer.2016.03.102
15.
Liu
,
J.
,
Xie
,
G.
, and
Sundén
,
B.
,
2017
, “
Flow Pattern and Heat Transfer Past Two Tandem Arranged Cylinders With Oscillating Inlet Velocity
,”
Appl. Therm. Eng.
,
120
, pp.
614
625
.10.1016/j.applthermaleng.2017.04.032
16.
Brereton
,
G. J.
, and
Jalil
,
S. M.
,
2017
, “
Diffusive Heat and Mass Transfer in Oscillatory Pipe Flow
,”
Phys. Fluids
,
29
(
7
), p.
073601
.10.1063/1.4990976
17.
Jalil
,
S. M.
,
2019
, “
Experimental and Numerical Investigation of Axial Heat Transfer Enhancement by Oscillatory Flows
,”
Int. J. Therm. Sci.
,
137
, pp.
352
364
.10.1016/j.ijthermalsci.2018.11.035
18.
Womersley
,
J. R.
,
1955
, “
Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient Is Known
,”
J. Physiol.
,
127
(
3
), pp.
553
563
.10.1113/jphysiol.1955.sp005276
19.
ANSYS
,
2016
, ANSYS® Academic Research, Release 17.2, Help System, Theory Guide, ANSYS Inc., Canonsburg, PA.
20.
Van Der A
,
D. A.
,
Scandura
,
P.
, and
O'Donoghue
,
T.
,
2018
, “
Turbulence Statistics in Smooth Wall Oscillatory Boundary Layer Flow
,”
J. Fluid Mech.
,
849
, pp.
192
230
.10.1017/jfm.2018.403
21.
Eckmann
,
D. M.
, and
Grotberg
,
J. B.
,
1991
, “
Experiments on Transition to Turbulence in Oscillatory Pipe Flow
,”
J. Fluid Mech.
,
222
(
1
), pp.
329
350
.10.1017/S002211209100112X
22.
Yuan
,
J.
, and
Madsen
,
O. S.
,
2014
, “
Experimental Study of Turbulent Oscillatory Boundary Layers in an Oscillating Water Tunnel
,”
Coastal Eng.
,
89
, pp.
63
84
.10.1016/j.coastaleng.2014.03.007
You do not currently have access to this content.