Abstract

The influence of hydrodynamically developing nonzero mean acoustic streaming motion on transient convective heat transfer in an air-filled rectangular enclosure is studied numerically. The enclosure is two-dimensional with sinusoidal bottom wall spatial temperature distribution. The oscillatory flow under relatively large Womersley number regime conditions is actuated by the periodic vibrations of the enclosure side wall. The side walls of the enclosure are adiabatic, while the top wall is isothermal. The compressible form of the Navier–Stokes equations is considered to predict the oscillatory- and time-averaged mean flow fields. A control-volume method based explicit computational scheme is used to simulate the convective transport in the enclosure. The longitudinal and the transverse temperature gradients strongly affect the flow structure in the enclosure. The mean fluid motion alters the heat transfer behavior compared to the pure conduction.

References

1.
Zhao
,
T. S.
, and
Cheng
,
P.
,
1996
, “
Oscillatory Heat Transfer in a Pipe Subjected to a Laminar Reciprocating Flow
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
592
597
.10.1115/1.2822673
2.
Worlikar
,
A. S.
, and
Knio
,
O. M.
,
1999
, “
Numerical Study of Oscillatory Flow and Heat Transfer in a Loaded Thermoacoustic Stack
,”
Numer. Heat Transfer, Part A
,
35
(
1
), pp.
49
65
.10.1080/104077899275362
3.
Lee
,
D.
,
Park
,
S.
, and
Ro
,
S. T.
,
1995
, “
Heat Transfer by Oscillating Flow in a Circular Pipe With a Sinusoidal Wall Temperature Distribution
,”
Int. J. Heat Mass Transfer
,
38
(
14
), pp.
2529
2537
.10.1016/0017-9310(95)00020-A
4.
Ramos
,
E.
,
Storey
,
B. D.
,
Sierra
,
F.
,
Zuniga
,
R.
, and
Avramenko
,
A.
,
2004
, “
Temperature Distribution in an Oscillatory Flow With a Sinusoidal Wall Temperature
,”
Int. J. Heat Mass Transfer
,
47
(
22
), pp.
4929
4938
.10.1016/j.ijheatmasstransfer.2004.04.033
5.
Jo
,
J.
, and
Kim
,
S. J.
,
2017
, “
Conjugate Heat Transfer by Oscillating Flow in a Parallel-Plate Channel Subject to a Sinusoidal Wall Temperature Distribution
,”
Appl. Therm. Eng.
,
123
, pp.
1462
1472
.10.1016/j.applthermaleng.2017.05.155
6.
Vainshtein
,
P.
,
Fichman
,
M.
, and
Gutfinger
,
C.
,
1995
, “
Acoustic Enhancement of Heat Transfer Between Two Parallel Plates
,”
Int. J. Heat Mass Transfer
,
38
(
10
), pp.
1893
1899
.10.1016/0017-9310(94)00299-B
7.
Hamilton
,
M. F.
,
Ilinskii
,
Y. A.
, and
Zabolotskaya
,
E. A.
,
2003
, “
Acoustic Streaming Generated by Standing Waves in Two-Dimensional Channels of Arbitrary Width
,”
J. Acoust. Soc. Am.
,
113
(
1
), pp.
153
160
.10.1121/1.1528928
8.
Hamilton
,
M. F.
,
Ilinskii
,
Y. A.
, and
Zabolotskaya
,
E. A.
,
2003
, “
Thermal Effects on Acoustic Streaming in Standing Waves
,”
J. Acoust. Soc. Am.
,
114
(
6
), pp.
3092
3101
.10.1121/1.1618752
9.
Wan
,
Q.
, and
Kuznetsov
,
A. V.
,
2004
, “
Streaming in a Channel Bounded by an Ultrasonically Oscillating Beam and Its Cooling Efficiency
,”
Numer. Heat Transfer, Part A
,
45
(
1
), pp.
21
47
.10.1080/1040778049026739
10.
Wan
,
Q.
, and
Kuznetsov
,
A. V.
,
2004
, “
Investigation of Hysteresis in Acoustically Driven Channel Flow at Ultrasonic Frequency
,”
Numer. Heat Transfer, Part A
,
47
(
2
), pp.
137
146
.10.1080/10407780590885873
11.
Thompson
,
M. W.
,
Atchley
,
A. A.
, and
Maccarone
,
M. J.
,
2005
, “
Influences of a Temperature Gradient and Fluid Inertia on Acoustic Streaming in a Standing Wave
,”
J. Acoust. Soc. Am.
,
117
(
4
), pp.
1839
1849
.10.1121/1.1859992
12.
Nabavi
,
M.
,
Siddiqui
,
K.
, and
Dargahi
,
J.
,
2008
, “
Influence of Differentially Heated Horizontal Walls on the Streaming Shape and Velocity in a Standing Wave Resonator
,”
Int. Commun. Heat Mass Transfer
,
35
(
9
), pp.
1061
1064
.10.1016/j.icheatmasstransfer.2008.05.018
13.
Hyun
,
S.
,
Lee
,
D. R.
, and
Loh
,
B. G.
,
2005
, “
Investigation of Convective Heat Transfer Augmentation Using Acoustic Streaming Generated by Ultrasonic Vibrations
,”
Int. J. Heat Mass Transfer
,
48
(
3–4
), pp.
703
718
.10.1016/j.ijheatmasstransfer.2004.07.048
14.
Shevtsova
,
V.
,
Ryzhkov
,
I. I.
,
Melnikov
,
D. E.
,
Gaponenko
,
Y. A.
, and
Mialdun
,
A.
,
2010
, “
Experimental and Theoretical Study of Vibration-Induced Thermal Convection in Low Gravity
,”
J. Fluid Mech.
,
648
, pp.
53
82
.10.1017/S0022112009993442
15.
Gopinath
,
A.
, and
Mills
,
A. F.
,
1994
, “
Convective Heat Transfer Due to Acoustic Streaming Across the Ends of a Kundt Tube
,”
ASME J. Heat Transfer
,
116
(
1
), pp.
47
53
.10.1115/1.2910882
16.
Aktas
,
M. K.
,
Farouk
,
B.
, and
Lin
,
Y. Q.
,
2005
, “
Heat Transfer Enhancement by Acoustic Streaming in an Enclosure
,”
ASME J. Heat Transfer
,
127
(
12
), pp.
1313
1321
.10.1115/1.2098858
17.
Aktas
,
M. K.
, and
Ozgumus
,
T.
,
2010
, “
The Effects of Acoustic Streaming on Thermal Convection in an Enclosure With Differentially Heated Horizontal Walls
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5289
5297
.10.1016/j.ijheatmasstransfer.2010.07.028
18.
Zhang
,
Y.
, and
Ma
,
H. B.
,
2008
, “
Nonequilibrium Heat Conduction in a Nanofluid Layer With Periodic Heat Flux
,”
Int. J. Heat Mass Transfer
,
51
(
19–20
), pp.
4862
4874
.10.1016/j.ijheatmasstransfer.2008.02.014
19.
Saha
,
S. C.
,
Patterson
,
J. C.
, and
Lei
,
C.
,
2010
, “
Natural Convection and Heat Transfer in Attics Subject to Periodic Thermal Forcing
,”
Int. J. Therm. Sci.
,
49
(
10
), pp.
1899
1910
.10.1016/j.ijthermalsci.2010.05.010
20.
Hossain
,
M. Z.
, and
Floryan
,
J. M.
,
2013
, “
Heat Transfer Due to Natural Convection in a Periodically Heated Slot
,”
ASME J. Heat Transfer
,
135
(
2
), p.
022503
.10.1115/1.4007420
21.
Aktas
,
M. K.
,
2012
, “
Thermal Convection in an Enclosure With Sinusoidal Bottom Wall Temperature: Effect of Vibrating Side Wall
,”
ASME
Paper No. IMECE2012-88879. 10.1115/IMECE2012-88879
22.
Cervenka
,
M.
, and
Bednarik
,
M.
,
2018
, “
Numerical Study of the Influence of the Convective Heat Transport on Acoustic Streaming in a Standing Wave
,”
J. Acoust. Soc. Am.
,
143
(
2
), pp.
727
734
.10.1121/1.5023217
23.
Reyt
,
I.
,
Daru
,
V.
,
Bailliet
,
H.
,
Moreau
,
S.
,
Valière
,
J. C.
,
Baltean-Carlès
,
D.
, and
Weisman
,
C.
,
2013
, “
Fast Acoustic Streaming in Standing Waves: Generation of an Additional Outer Streaming Cell
,”
J. Acoust. Soc. Am.
,
134
(
3
), pp.
1791
1801
.10.1121/1.4817888
24.
Kakac
,
S.
,
Yener
,
Y.
, and
Pramuanjaroenkij
,
A.
,
2014
,
Convective Heat Transfer
,
CRC
,
Boca Raton, FL
.
25.
Oran
,
E. S.
, and
Boris
,
J. P.
,
2000
,
Numerical Simulation of Reactive Flows
,
Cambridge University Press
,
Cambridge, UK
.
26.
Farouk
,
B.
,
Oran
,
E. S.
, and
Fusegi
,
T.
,
2000
, “
Numerical Study of Thermoacoustic Waves in an Enclosure
,”
Phys. Fluids
,
12
(
5
), pp.
1052
1061
.10.1063/1.870360
27.
Aktas
,
M. K.
, and
Ozgumus
,
T.
,
2010
, “
Nonzero Mean Oscillatory Flow in Symmetrically-Heated Shallow Enclosures: An Analysis of Acoustic Streaming
,”
Numer. Heat Transfer, Part A
,
57
(
11
), pp.
869
891
.10.1080/10407782.2010.489477
28.
Aktas
,
M. K.
, and
Ozgumus
,
T.
,
2011
, “
A Numerical Investigation of the Effects of a Transverse Temperature Gradient on the Formation of Regular and Irregular Acoustic Streaming in an Enclosure
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
1
), pp.
132
144
.10.1243/09544062JMES1834
29.
Poinsot
,
T. J.
, and
Lele
,
S. K.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.10.1016/0021-9991(92)90046-2
30.
Beranek
,
L. L.
,
1954
,
Acoustics
,
American Institutes of Physics
,
New York
.
You do not currently have access to this content.