Abstract

In this study, heating and cooling performances of two vortex tubes connected in parallel using different working fluids were compared. In experimental studies, oxygen, nitrogen, and air were used as working fluids in counterflow Ranque–Hilsch vortex tube (RHVT) and performance evaluation was performed. Nozzles made of polyamide and brass are used, and the number of these nozzles is 2, 4, and 6. Compressed working fluids were used to operate the vortex tube system at different inlet pressure values varying from 150 kPa to 600 kPa with 50 kPa increment. The geometric characteristics of the vortex tube are the length of the hot tube and the diameter of the orifice, which are 100 mm and 7 mm, respectively. Experiments were performed with the hot flow outlet valve fully open. The thermodynamic performance of the parallel connected vortex tube system was determined by performing exergy analysis. As a result of experimental studies, the highest performance of parallel connected RHVT system was obtained when nitrogen was used as a working fluid with brass-six-nozzle at 600 kPa.

References

1.
Kirmaci
,
V.
, and
Kaya
,
H.
,
2018
, “
Effects of Working Fluid, Nozzle Number, Nozzle Material and Connection Type on Thermal Performance of a Ranque–Hilsch Vortex Tube: A Review
,”
Int. J. Refrig.
,
91
, pp.
254
266
.10.1016/j.ijrefrig.2018.05.005
2.
Xue
,
Y.
,
Arjomandi
,
M.
, and
Kelso
,
R.
,
2010
, “
A Critical Review of Temperature Separation in a Vortex Tube
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1367
1374
.10.1016/j.expthermflusci.2010.06.010
3.
Attalla
,
M.
,
Ahmed
,
H.
,
Ahmed
,
M. S.
, and
El-Wafa
,
A. A.
,
2017
, “
Experimental Investigation for Thermal Performance of Series and Parallel Ranque-Hilsch Vortex Tube Systems
,”
Appl. Therm. Eng.
,
123
, pp.
327
339
.10.1016/j.applthermaleng.2017.05.084
4.
Kaya
,
H.
,
Günver
,
F.
,
Uluer
,
O.
, and
Kirmaci
,
V.
,
2018
, “
Experimental Study About Performance Analysis of Parallel Connected Ranque-Hilsch Counter Flow Vortex Tubes With Different Nozzle Numbers and Materials
,”
ASME J. Heat Transfer
,
140
(
11
), p.
112801
.10.1115/1.4040707
5.
Kirmaci
,
V.
,
2009
, “
Exergy Analysis and Performance of a Counter Flow Ranque-Hilsch Vortex Tube Having Various Nozzle Numbers at Different Inlet Pressures of Oxygen and Air
,”
Int. J. Refrig.
,
32
(
7
), pp.
1626
1633
.10.1016/j.ijrefrig.2009.04.007
6.
Kaya
,
H.
,
Günver
,
F.
, and
Kirmaci
,
V.
,
2018
, “
Experimental Investigation of Thermal Performance of Parallel Connected Vortex Tubes With Various Nozzle Materials
,”
Appl. Therm. Eng.
,
136
, pp.
287
292
.10.1016/j.applthermaleng.2018.02.105
7.
Dincer
,
K.
,
Yilmaz
,
Y.
,
Berber
,
A.
, and
Baskaya
,
S.
,
2011
, “
Experimental Investigation of Performance of Hot Cascade Type Ranque-Hilsch Vortex Tube and Exergy Analysis
,”
Int. J. Refrig.
,
34
(
4
), pp.
1117
1124
.10.1016/j.ijrefrig.2011.01.017
8.
Kırmacı
,
V.
,
Uluer
,
O.
, and
Dincer
,
K.
,
2010
, “
An Experimental Investigation of Performance and Exergy Analysis of a Counterflow Vortex Tube Having Various Nozzle Numbers at Different Inlet Pressures of Air, Oxygen, Nitrogen, and Argon
,”
ASME J. Heat Transfer
,
132
(
12
), p.
121701
.10.1115/1.4002284
9.
Dincer
,
K.
,
2011
, “
Experimental Investigation of the Effects of Threefold Type Ranque-Hilsch Vortex Tube and Six Cascade Type Ranque-Hilsch Vortex Tube on the Performance of Counter Flow Ranque-Hilsch Vortex Tubes
,”
Int. J. Refrig.
,
34
(
6
), pp.
1366
1371
.10.1016/j.ijrefrig.2011.05.008
10.
Guo
,
X.
,
Zhang
,
B.
,
Liu
,
B.
, and
Xu
,
X.
,
2019
, “
A Critical Review on the Flow Structure Studies of Ranque—Hilsch Vortex Tubes
,”
Int. J. Refrig.
,
104
, pp.
51
64
.10.1016/j.ijrefrig.2019.04.030
11.
Li
,
N.
,
Jiang
,
G.
,
Fu
,
L.
,
Tang
,
L.
, and
Chen
,
G.
,
2019
, “
Experimental Study of the Impacts of Cold Mass Fraction on Internal Parameters of a Vortex Tube
,”
Int. J. Refrig.
,
104
, pp.
151
160
.10.1016/j.ijrefrig.2019.05.002
12.
Lagrandeur
,
J.
,
Poncet
,
S.
, and
Sorin
,
M.
,
2019
, “
Review of Predictive Models for the Design of Counterflow Vortex Tubes Working With Perfect Gas
,”
Int. J. Therm. Sci.
,
142
, pp.
188
204
.10.1016/j.ijthermalsci.2019.03.024
13.
Xue
,
Y.
,
Binns
,
J. R.
,
Arjomandi
,
M.
, and
Yan
,
H.
,
2019
, “
Experimental Investigation of the Flow Characteristics Within a Vortex Tube With Different Configurations
,”
Int. J. Heat Fluid Flow
,
75
, pp.
195
208
.10.1016/j.ijheatfluidflow.2019.01.005
14.
Attalla
,
M.
,
Ahmed
,
H.
,
Salem Ahmed
,
M.
, and
Abo El- Wafa
,
A.
,
2017
, “
An Experimental Study of Nozzle Number on Ranque Hilsch Counter-Flow Vortex Tube
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
381
389
.10.1016/j.expthermflusci.2016.11.034
15.
Majidi
,
D.
,
Alighardashi
,
H.
, and
Farhadi
,
F.
,
2018
, “
Best Vortex Tube Cascade for Highest Thermal Separation
,”
Int. J. Refrig.
,
85
, pp.
282
291
.10.1016/j.ijrefrig.2017.10.006
16.
Shamsoddini
,
R.
, and
Abolpour
,
B.
,
2018
, “
A Geometric Model for a Vortex Tube Based on Numerical Analysis to Reduce the Effect of Nozzle Number
,”
Int. J. Refrig.
,
94
, pp.
49
58
.10.1016/j.ijrefrig.2018.07.027
17.
Bazgir
,
A.
,
Nabhani
,
N.
, and
Eiamsa-ard
,
S.
,
2018
, “
Numerical Analysis of Flow and Thermal Patterns in a Double-Pipe Ranque-Hilsch Vortex Tube: Influence of Cooling a Hot-Tube
,”
Appl. Therm. Eng.
,
144
, pp.
181
208
.10.1016/j.applthermaleng.2018.08.043
18.
Hamdan
,
M. O.
,
Al-Omari
,
S.-A. B.
, and
Oweimer
,
A. S.
,
2018
, “
Experimental Study of Vortex Tube Energy Separation Under Different Tube Design
,”
Exp. Therm. Fluid Sci.
,
91
, pp.
306
311
.10.1016/j.expthermflusci.2017.10.034
19.
Khait
,
A.
,
Noskov
,
A.
,
Alekhin
,
V.
, and
Bianco
,
V.
,
2018
, “
Analysis of the Local Entropy Generation in a Double-Circuit Vortex Tube
,”
Appl. Therm. Eng.
,
130
, pp.
1391
1403
.10.1016/j.applthermaleng.2017.11.136
20.
Acar
,
M.
,
Erbas
,
O.
, and
Arslan
,
O.
,
2019
, “
The Performance of Vapor Compression Cooling System Aided Ranque-Hilsch Vortex Tube
,”
Therm. Sci.
,
23
(
2 Part B
), pp.
1189
1201
.10.2298/TSCI170919306A
21.
Yun
,
J.
,
Kim
,
Y.
, and
Yu
,
S.
,
2018
, “
Feasibility Study of Carbon Dioxide Separation From Gas Mixture by Vortex Tube
,”
Int. J. Heat Mass Transfer
,
126
, pp.
353
361
.10.1016/j.ijheatmasstransfer.2018.04.150
22.
Thakare
,
H. R.
, and
Parekh
,
A. D.
,
2017
, “
Experimental Investigation & CFD Analysis of Ranque–Hilsch Vortex Tube
,”
Energy
,
133
, pp.
284
298
.10.1016/j.energy.2017.05.070
23.
Devade
,
K. D.
, and
Pise
,
A. T.
,
2017
, “
Exergy Analysis of a Counter Flow Ranque–Hilsch Vortex Tube for Different Cold Orifice Diameters, L/D Ratios and Exit Valve Angles
,”
Heat Mass Transfer
,
53
(
6
), pp.
2017
2029
.10.1007/s00231-016-1962-7
24.
Attalla
,
M.
,
Ahmed
,
H.
,
Ahmed
,
M. S.
, and
El–Wafa
,
A. A.
,
2017
, “
Experimental Investigation of the Effect of Nozzle Numbers on Ranque–Hilsch Vortex Tube Performance
,”
Exp. Heat Transfer
,
30
(
3
), pp.
253
265
.10.1080/08916152.2016.1233150
25.
Rafiee
,
S. E.
,
Sadeghiazad
,
M. M.
, and
Mostafavinia
,
N.
,
2015
, “
Experimental and Numerical Investigation on Effect of Convergent Angle and Cold Orifice Diameter on Thermal Performance of Convergent Vortex Tube
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
4
), p.
041006
.10.1115/1.4030639
26.
Xue
,
Y.
,
Arjomandi
,
M.
, and
Kelso
,
R.
,
2014
, “
Energy Analysis Within a Vortex Tube
,”
Exp. Therm. Fluid Sci.
,
52
, pp.
139
145
.10.1016/j.expthermflusci.2013.09.004
27.
Liu
,
X.
, and
Liu
,
Z.
,
2014
, “
Investigation of the Energy Separation Effect and Flow Mechanism Inside a Vortex Tube
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
494
506
.10.1016/j.applthermaleng.2014.03.071
28.
Xue
,
Y.
,
Arjomandi
,
M.
, and
Kelso
,
R.
,
2013
, “
The Working Principle of a Vortex Tube
,”
Int. J. Refrig.
,
36
(
6
), pp.
1730
1740
.10.1016/j.ijrefrig.2013.04.016
29.
Avci
,
M.
,
2013
, “
The Effects of Nozzle Aspect Ratio and Nozzle Number on the Performance of the Ranque-Hilsch Vortex Tube
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
302
308
.10.1016/j.applthermaleng.2012.06.048
30.
Selek
,
M.
,
Tasdemir
,
S.
,
Dincer
,
K.
, and
Baskaya
,
S.
,
2011
, “
Experimental Examination of the Cooling Performance of Ranque-Hilsch Vortex Tube on the Cutting Tool Nose Point of the Turret Lathe Through Infrared Thermography Method
,”
Int. J. Refrig.
,
34
(
3
), pp.
807
815
.10.1016/j.ijrefrig.2010.11.008
31.
Xue
,
Y.
, and
Arjomandi
,
M.
,
2008
, “
The Effect of Vortex Angle on the Efficiency of the Ranque-Hilsch Vortex Tube
,”
Exp. Therm. Fluid Sci.
,
33
(
1
), pp.
54
57
.10.1016/j.expthermflusci.2008.07.001
32.
Aydin
,
O.
, and
Baki
,
M.
,
2006
, “
An Experimental Study on the Design Parameters of a Counterflow Vortex Tube
,”
Energy
,
31
(
14
), pp.
2763
2436
.10.1016/j.energy.2005.11.017
33.
Thakare
,
H. R.
, and
Parekh
,
A. D.
,
2015
, “
Computational Analysis of Energy Separation in Counter-Flow Vortex Tube
,”
Energy
,
85
, pp.
62
77
.10.1016/j.energy.2015.03.058
34.
Berber
,
A.
,
Dincer
,
K.
,
Yilmaz
,
Y.
, and
Ozen
,
D. N.
,
2013
, “
Rule-Based Mamdani-Type Fuzzy Modeling of Heating and Cooling Performances of Counter-Flow Ranque-Hilsch Vortex Tubes With Different Geometric Construction for Steel
,”
Energy
,
51
, pp.
297
304
.10.1016/j.energy.2013.01.005
35.
Markal
,
B.
,
Aydin
,
O.
, and
Avci
,
M.
,
2010
, “
An Experimental Study on the Effect of the Valve Angle of Counter-Flow Ranque-Hilsch Vortex Tubes on Thermal Energy Separation
,”
Exp. Therm. Fluid Sci.
,
34
(
7
), pp.
966
971
.10.1016/j.expthermflusci.2010.02.013
36.
Rafiee
,
S. E.
, and
Sadeghiazad
,
M. M.
,
2017
, “
Experimental and 3D CFD Investigation on Heat Transfer and Energy Separation Inside a Counter Flow Vortex Tube Using Different Shapes of Hot Control Valves
,”
Appl. Therm. Eng.
,
110
, pp.
648
664
.10.1016/j.applthermaleng.2016.08.166
37.
Kirmaci
,
V.
,
Kaya
,
H.
, and
Cebeci
,
I.
,
2018
, “
An Experimental and Exergy Analysis of a Thermal Performance of a Counter Flow Ranque-Hilsch Vortex Tube With Different Nozzle Materials
,”
Int. J. Refrig.
,
85
, pp.
240
254
.10.1016/j.ijrefrig.2017.10.003
38.
Rafiee
,
S. E.
, and
Sadeghiazad
,
M. B. M.
,
2016
, “
Three-Dimensional Computational Prediction of Vortex Separation Phenomenon Inside the Ranque-Hilsch Vortex Tube
,”
Aviation
,
20
(
1
), pp.
21
31
.10.3846/16487788.2016.1139814
39.
Bej
,
N.
, and
Sinhamahapatra
,
K. P.
,
2016
, “
Numerical Analysis on the Heat and Work Transfer Due to Shear in a Hot Cascade Ranque-Hilsch Vortex Tube
,”
Int. J. Refrig.
,
68
, pp.
161
176
.10.1016/j.ijrefrig.2016.04.021
40.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
41.
Dincer
,
K.
,
Avci
,
A.
,
Baskaya
,
S.
, and
Berber
,
A.
,
2010
, “
Experimental Investigation and Exergy Analysis of the performance of a Counter Flow Ranque-Hilsch Vortex Tube With Regard to Nozzle Cross-Section Areas
,”
Int. J. Refrig.
,
33
(
5
), pp.
954
962
.10.1016/j.ijrefrig.2010.03.009
42.
Saidi
,
M. H.
, and
Yazdi
,
M. R. A.
,
1999
, “
Exergy Model of a Vortex Tube System With Experimental Results
,”
Energy
,
24
(
7
), pp.
625
632
.10.1016/S0360-5442(98)00076-0
43.
Subudhi
,
S.
, and
Sen
,
M.
,
2015
, “
Review of Ranque-Hilsch Vortex Tube Experiments Using Air
,”
Renewable Sustainable Energy Rev.
,
52
, pp.
172
178
.10.1016/j.rser.2015.07.103
44.
Cebeci
,
I.
,
Kirmaci
,
V.
, and
Topcuoglu
,
U.
,
2016
, “
The Effects of Orifice Nozzle Number and Nozzle Made of Polyamide Plastic and Aluminum With Different Inlet Pressures on Heating and Cooling Performance of Counter Flow Ranque-Hılsch Vortex Tubes: An Experimental Investigation
,”
Int. J. Refrig.
,
72
, pp.
140
146
.10.1016/j.ijrefrig.2016.07.013
45.
Simões-Moreira
,
J. R.
,
2010
, “
An Air-Standard Cycle and a Thermodynamic Perspective on Operational Limits of Ranque-Hilsh or Vortex Tubes
,”
Int. J. Refrig.
,
33
(
4
), pp.
765
773
.10.1016/j.ijrefrig.2010.01.005
46.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
, pp.
50
75
.
You do not currently have access to this content.