Abstract

In this paper, molecular dynamics simulation is used to investigate the effect of copper and argon nanochannels size on the thermal conductivity of argon. Thermal conductivity is calculated by nonequilibrium molecular dynamics (NEMD) simulation. Simulations are performed for different distances between the walls. Results for both copper and argon walls are investigated individually. Results show that the existence of argon walls has little effect on the thermal conductivity. However, the amount of it for the argon confined between the copper walls is affected by the distance between the two walls. In the same way, the effect of wall roughness on the thermal conductivity is investigated, which shows that roughness is effective only for low distances between the walls. Also, the thermal conductivity of argon under Poiseuille flow in a nanochannel is studied. The results indicate that by increasing the driving force, the thermal conductivity increases and the increase ratio is higher for larger forces.

References

1.
Nieto-Draghi
,
C.
, and
Avalos
,
J. B.
,
2003
, “
Non-Equilibrium Momentum Exchange Algorithm for Molecular Dynamics Simulation of Heat Flow in Multicomponent Systems
,”
Mol. Phys.
,
101
(
14
), pp.
2303
2307
.10.1080/0026897031000154338
2.
Lu
,
W. Q.
, and
Fan
,
Q. M.
,
2008
, “
Study for the Particle's Scale Effect on Some Thermophysical Properties of Nanofluids by a Simplified Molecular Dynamics Method
,”
Eng. Anal. Boundary Elem.
,
32
(
4
), pp.
282
289
.10.1016/j.enganabound.2007.10.006
3.
Kumar
,
P.
,
Buldyrev
,
S. V.
,
Starr
,
F. W.
,
Giovambattista
,
N.
, and
Stanley
,
H. E.
,
2005
, “
Thermodynamics, Structure, and Dynamics of Water Confined Between Hydrophobic Plates
,”
Phys. Rev. E
,
72
(
5
), p.
051503
.10.1103/PhysRevE.72.051503
4.
Giovambattista
,
N.
,
Debenedetti
,
P. G.
, and
Rossky
,
P. J.
,
2007
, “
Hydration Behavior Under Confinement by Nanoscale Surfaces With Patterned Hydrophobicity and Hydrophilicity
,”
J. Phys. Chem. C
,
111
(
3
), pp.
1323
1332
.10.1021/jp065419b
5.
Ge
,
S.
,
Gu
,
Y.
, and
Chen
,
M.
,
2015
, “
A Molecular Dynamics Simulation on the Convective Heat Transfer in Nanochannels
,”
Mol. Phys.
,
113
(
7
), pp.
703
710
.10.1080/00268976.2014.970593
6.
Lv
,
J.
,
Cui
,
W.
,
Bai
,
M.
, and
Li
,
X.
,
2011
, “
Molecular Dynamics Simulation on Flow Behavior of Nanofluids Between Flat Plates Under Shear Flow Condition
,”
Microfluid. Nanofluid.
,
10
(
2
), pp.
475
480
.10.1007/s10404-010-0684-2
7.
Sun
,
C. Z.
,
Lu
,
W. Q.
,
Bai
,
B. F.
, and
Liu
,
J.
,
2014
, “
Novel Flow Behaviors Induced by a Solid Particle in Nanochannels: Poiseuille and Couette
,”
Chin. Sci. Bull.
,
59
(
20
), pp.
2478
2485
.10.1007/s11434-014-0282-x
8.
Kim
,
D.
, and
Darve
,
E.
,
2006
, “
Molecular Dynamics Simulation of Electro-Osmotic Flows in Rough Wall Nanochannels
,”
Phys. Rev. E
,
73
(
5
), p.
051203
.10.1103/PhysRevE.73.051203
9.
Kamali
,
R.
, and
Kharazmi
,
A.
,
2011
, “
Molecular Dynamics Simulation of Surface Roughness Effects on Nanoscale Flows
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
226
232
.10.1016/j.ijthermalsci.2010.05.004
10.
Sofos
,
F. D.
,
Karakasidis
,
T. E.
, and
Liakopoulos
,
A.
,
2009
, “
Effects of Wall Roughness on Flow in Nanochannels
,”
Phys. Rev. E
,
79
(
2
), p.
026305
.10.1103/PhysRevE.79.026305
11.
Noorian
,
H.
,
Toghraie
,
D.
, and
Azimian
,
A. R.
,
2014
, “
Molecular Dynamics Simulation of Poiseuille Flow in a Rough Nano Channel With Checker Surface Roughnesses Geometry
,”
Heat Mass Transfer
,
50
(
1
), pp.
105
113
.10.1007/s00231-013-1232-x
12.
Lin
,
Y. S.
,
Hsiao
,
P. Y.
, and
Chieng
,
C. C.
,
2012
, “
Thermophysical Characteristics of Ethylene Glycol-Based Copper Nanofluids Using Nonequilibrium and Equilibrium Methods
,”
Int. J. Therm. Sci.
,
62
, pp.
56
60
.10.1016/j.ijthermalsci.2012.02.003
13.
Sun
,
C.
,
Lu
,
W. Q.
,
Bai
,
B.
, and
Liu
,
J.
,
2011
, “
Anomalous Enhancement in Thermal Conductivity of Nanofluid Induced by Solid Walls in a Nanochannel
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
3799
3805
.10.1016/j.applthermaleng.2011.07.021
14.
Loulijat
,
H.
,
Zerradi
,
H.
,
Dezairi
,
A.
,
Ouaskit
,
S.
,
Mizani
,
S.
, and
Rhayt
,
F.
,
2015
, “
Effect of Morse Potential as Model of Solid–Solid Inter-Atomic Interaction on the Thermal Conductivity of Nanofluids
,”
Adv. Powder Technol.
,
26
(
1
), pp.
180
187
.10.1016/j.apt.2014.09.006
15.
Frank
,
M.
,
Drikakis
,
D.
, and
Asproulis
,
N.
,
2015
, “
Thermal Conductivity of Nanofluid in Nanochannels
,”
Microfluid. Nanofluid.
,
19
(
5
), pp.
1011
1017
.10.1007/s10404-015-1591-3
16.
Sankar
,
N.
,
Mathew
,
N.
, and
Sobhan
,
C. B.
,
2008
, “
Molecular Dynamics Modeling of Thermal Conductivity Enhancement in Metal Nanoparticle Suspensions
,”
Int. Commun. Heat Mass Transfer
,
35
(
7
), pp.
867
872
.10.1016/j.icheatmasstransfer.2008.03.006
17.
Paul
,
J.
,
Madhu
,
J.
,
Jayadeep
,
U. B.
,
Sobhan
,
C. B.
, and
Peterson
,
G. P.
,
2018
, “
A Molecular Dynamics Study of Liquid Layering and Thermal Conductivity Enhancement in Nanoparticle Suspensions
,”
Heat Mass Transfer
,
54
(
3
), pp.
785
791
.10.1007/s00231-017-2175-4
18.
Mohebbi
,
A.
,
2012
, “
Prediction of Specific Heat and Thermal Conductivity of Nanofluids by a Combined Equilibrium and Non-Equilibrium Molecular Dynamics Simulation
,”
J. Mol. Liq.
,
175
(
3
), pp.
51
58
.10.1016/j.molliq.2012.08.010
19.
Babaei
,
H.
,
Keblinski
,
P.
, and
Khodadadi
,
J. M.
,
2012
, “
Equilibrium Molecular Dynamics Determination of Thermal Conductivity for Multi-Component Systems
,”
J. Appl. Phys.
,
112
(
5
), p.
054310
.10.1063/1.4749265
20.
Sofos
,
F.
,
Karakasidis
,
T. E.
,
Giannakopoulos
,
A. E.
, and
Liakopoulos
,
A.
,
2016
, “
Molecular Dynamics Simulation on Flows in Nano-Ribbed and Nano-Grooved Channels
,”
Heat Mass Transfer
,
52
(
1
), pp.
153
162
.10.1007/s00231-015-1601-8
21.
Müller-Plathe
,
F.
,
1997
, “
A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity
,”
J. Chem. Phys.
,
106
(
14
), pp.
6082
6085
.10.1063/1.473271
22.
Bedrov
,
D.
, and
Smith
,
G. D.
,
2000
, “
Thermal Conductivity of Molecular Fluids From Molecular Dynamics Simulations: Application of a New Imposed-Flux Method
,”
J. Chem. Phys.
,
113
(
18
), pp.
8080
8084
.10.1063/1.1312309
23.
Terao
,
T.
, and
Müller-Plathe
,
F.
,
2005
, “
A Nonequilibrium Molecular Dynamics Method for Thermal Conductivities Based on Thermal Noise
,”
J. Chem. Phys.
,
122
(
8
), p.
081103
.10.1063/1.1858858
24.
Botelho
,
D. F.
,
Branício
,
P. S.
, and
Rino
,
J. P.
,
2006
, “
Thermal Conductivity in Nanoscale Lennard-Jones Systems: Size Effects in the Fluid and Solid Phases
,”
Defect Diffus. Forum
,
258
, pp.
310
315
.10.4028/www.scientific.net/DDF.258-260.310
25.
Liu
,
Q. X.
,
Jiang
,
P. X.
, and
Xiang
,
H.
,
2010
, “
Molecular Dynamics Simulation of Thermal Conductivity of an Argon Liquid Layer Confined in Nanospace
,”
Mol. Simul.
,
36
(
13
), pp.
1080
1085
.10.1080/08927022.2010.504773
26.
Hu
,
C.
,
Bai
,
M.
,
Lv
,
J.
, and
Li
,
X.
,
2016
, “
An Investigation on the Flow and Heat Transfer Characteristics of Nanofluids by Nonequilibrium Molecular Dynamics Simulations
,”
Numer. Heat Transfer, Part B
,
70
(
2
), pp.
152
163
.10.1080/10407790.2016.1177398
27.
Zhu
,
W.
,
Zheng
,
G.
,
Cao
,
S.
, and
He
,
H.
,
2018
, “
Thermal Conductivity of Amorphous SiO2 Thin Film: A Molecular Dynamics Study
,”
Sci. Rep.
,
8
(
1
), p.
10537
.10.1038/s41598-018-28925-6
28.
Hoover
,
W. G.
,
1985
, “
Canonical Dynamics: Equilibrium Phase-Space Distributions
,”
Phys. Rev. A
,
31
(
3
), pp.
1695
1697
.10.1103/PhysRevA.31.1695
29.
Tang
,
Y.
,
Fu
,
T.
,
Mao
,
Y.
,
Zhang
,
Y.
, and
Yuan
,
W.
,
2014
, “
Molecule Dynamics Simulation of Heat Transfer Between Argon Flow and Parallel Copper Plates
,”
ASME J. Nanotechnol. Eng. Med.
,
5
(
3
), p.
034501
.10.1115/1.4029158
30.
Cui
,
W.
,
Shen
,
Z.
,
Yang
,
J.
, and
Wu
,
S.
,
2015
, “
On the Increased Heat Conduction and Changed Flow Boundary-Layer of Nanofluids by Molecular Dynamics Simulation
,”
Dig. J. Nanomater. Biostructures
,
10
(
1
), pp.
207
219
.http://www.chalcogen.ro/207_Cui.pdf
31.
Cui
,
W.
,
Shen
,
Z.
,
Yang
,
J.
, and
Wu
,
S.
,
2015
, “
Rotation and Migration of Nanoparticles for Heat Transfer Augmentation in Nanofluids by Molecular Dynamics Simulation
,”
Case Stud. Therm. Eng.
,
6
, pp.
182
193
.10.1016/j.csite.2015.10.003
32.
Lee
,
S. L.
,
Saidur
,
R.
,
Sabri
,
M. F. M.
, and
Min
,
T. K.
,
2016
, “
Molecular Dynamic Simulation: Studying the Effects of Brownian Motion and Induced Micro-Convection in Nanofluids
,”
Numer. Heat Transfer, Part A
,
69
(
6
), pp.
643
658
.10.1080/10407782.2015.1090765
33.
Hu
,
C.
,
Bai
,
M.
,
Lv
,
L.
,
Wang
,
P.
,
Zhang
,
L.
, and
Li
,
X.
,
2014
, “
Molecular Dynamics Simulation of Nanofluid's Flow Behaviors in the Near-Wall Model and Main Flow Model
,”
Microfluid. Nanofluid.
,
17
(
3
), pp.
581
589
.10.1007/s10404-013-1323-5
34.
Ziarani
,
A. S.
, and
Mohamad
,
A. A.
,
2008
, “
Effect of Wall Roughness on the Slip of Fluid in a Microchannel
,”
Nanoscale Microscale Thermophys. Eng.
,
12
(
2
), pp.
154
169
.10.1080/15567260802171929
35.
Bhattacharya
,
P.
,
Saha
,
S. K.
,
Yadav
,
A.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
,
2004
, “
Brownian Dynamics Simulation to Determine the Effective Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
95
(
11
), pp.
6492
6494
.10.1063/1.1736319
36.
Sun
,
C.
,
Lu
,
W. Q.
,
Liu
,
J.
, and
Bai
,
B.
,
2011
, “
Molecular Dynamics Simulation of Nanofluid's Effective Thermal Conductivity in High-Shear-Rate Couette Flow
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2560
2567
.10.1016/j.ijheatmasstransfer.2011.02.005
37.
Lee
,
S. H.
,
Park
,
D. K.
, and
Kang
,
D. B.
,
2003
, “
Molecular Dynamics Simulations for Transport Coefficients of Liquid Argon: New Approaches
,”
Bull. Korean Chem. Soc.
,
24
(
2
), pp.
178
182
.10.5012/bkcs.2003.24.2.178
You do not currently have access to this content.