Abstract

Chemical vapor deposition (CVD) is a widely used manufacturing process for obtaining thin films of materials like silicon, silicon carbide, graphene, and gallium nitride that are employed in the fabrication of electronic and optical devices. Gallium nitride (GaN) thin films are attractive materials for manufacturing optoelectronic device applications due to their wide band gap and superb optoelectronic performance. The reliability and durability of the devices depend on the quality of the thin films. The metal-organic chemical vapor deposition (MOCVD) process, which uses compounds that contain metals and organic ligands as precursors in a CVD reactor, is a common technique used to fabricate high-quality GaN thin films. The deposition rate and uniformity of thin films are critical to a successful and useful process. These are determined by the thermal transport processes and chemical reactions occurring in the reactor, and are manipulated by controlling the operating conditions and the reactor geometrical configuration. In this study, the epitaxial growth of GaN thin films on sapphire (Al2O3) substrates is carried out in two commercial MOCVD systems: a vertical rotating disk MOCVD reactor and a close-coupled showerhead MOCVD reactor. The surface morphology and crystal quality of GaN thin films have been examined using atomic force microscopy (AFM) and scanning electron microscope (SEM). This paper focuses on the composition of the precursor and the carrier gases since earlier studies have shown the importance of precursor composition. The results show that the flow rate of trimethylgallium (TMG), which is the main ingredient in the process, has a significant effect on the deposition rate and uniformity of the films. Also, the carrier gas plays an important role in deposition rate and uniformity. Using hydrogen as a carrier gas enhances the quality of the thin film but a lower deposition rate occurs on the wafer surface. On the other hand, a high flow rate of pure nitrogen gas improves the growth rate of the film. However, it decreases the uniformity of the film and promotes carbon contamination on the wafer surface. Thus, the use of an appropriate mixture of hydrogen and nitrogen as the carrier gas can improve the deposition rate and quality of GaN thin films.

References

1.
Nakamura
,
S.
,
Senoh
,
M.
,
Iwasa
,
N.
, and
Nagahama
,
S.
,
1995
, “
High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes With Quantum Well Structures
,”
Jpn. J. Appl. Phys.
,
34
(
Part 2, No. 7A
), pp.
L797
L799
.10.1143/JJAP.34.L797
2.
Vispute
,
R. D.
,
Talyansky
,
V.
,
Sharma
,
R. P.
,
Choopun
,
S.
,
Downes
,
M.
,
Venkatesan
,
T.
,
Jones
,
K. A.
,
Iliadis
,
A. A.
,
Asif Khan
,
M.
, and
Yang
,
J. W.
,
1997
, “
Growth of Epitaxial GaN Films by Pulsed Laser Deposition
,”
Appl. Phys. Lett.
,
71
(
1
), pp.
102
104
.10.1063/1.119441
3.
Hitchman
,
M. L.
, and
Jones
,
A. C.
,
2009
,
Chemical Vapour Deposition: Precursors, Processes and Applications
,
Royal Society of Chemistry
,
Cambridge, UK
.
4.
Gerthsen
,
D.
,
Neubauer
,
B.
,
Dieker
,
C.
,
Lantier
,
R.
,
Rizzi
,
A.
, and
Lüth
,
H.
,
1999
, “
Molecular Beam Epitaxy (MBE) Growth and Structural Properties of GaN and AlN on 3C-Sic(001) Substrates
,”
J. Cryst. Growth
,
200
(
3–4
), pp.
353
361
.10.1016/S0022-0248(99)00060-3
5.
Hiramatsu
,
K.
,
Itoh
,
S.
,
Amano
,
H.
,
Akasaki
,
I.
,
Kuwano
,
N.
,
Shiraishi
,
T.
, and
Oki
,
K.
,
1991
, “
Growth Mechanism of GaN Grown on Sapphire With A1N Buffer Layer by MOVPE
,”
J. Cryst. Growth
,
115
(
1–4
), pp.
628
633
.10.1016/0022-0248(91)90816-N
6.
Huang
,
W. C.
,
Chu
,
C. M.
,
Wong
,
Y. Y.
,
Chen
,
K. W.
,
Lin
,
Y. K.
,
Wu
,
C. H.
,
Lee
,
W. I.
, and
Chang
,
E. Y.
,
2016
, “
Investigations of GaN Growth on the Sapphire Substrate by MOCVD Method With Different AlN Buffer Deposition Temperatures
,”
Mater. Sci. Semicond. Process.
,
45
(
Suppl C
), pp.
1
8
.10.1016/j.mssp.2016.01.008
7.
Mitrovic
,
B.
,
Gurary
,
A.
, and
Quinn
,
W.
,
2007
, “
Process Conditions Optimization for the Maximum Deposition Rate and Uniformity in Vertical Rotating Disc MOCVD Reactors Based on CFD Modeling
,”
J. Cryst. Growth
,
303
(
1
), pp.
323
329
.10.1016/j.jcrysgro.2006.11.247
8.
Cheng
,
W. T.
,
Li
,
H. C.
, and
Huang
,
C. N.
,
2008
, “
Simulation and Optimization of Silicon Thermal CVD Through CFD Integrating Taguchi Method
,”
Chem. Eng. J.
,
137
(
3
), pp.
603
613
.10.1016/j.cej.2007.05.042
9.
Elhaddad
,
A.
,
2010
, “
Growth of SiC by High Temperature CVD and Application of Thermo-Gravimetry for an In-Situ Growth Rate Measurement
,” Ph.D. Thesis,
University Duisburg-Essen
,
Germany
.
10.
Ashfold
,
M. N. R.
,
May
,
P. W.
,
Rego
,
C. A.
, and
Everitt
,
N. M.
,
1994
, “
Thin Film Diamond by Chemical Vapour Deposition Methods
,”
Chem. Soc. Rev.
,
23
(
1
), p.
21
.10.1039/cs9942300021
11.
Meng
,
J.
, and
Jaluria
,
Y.
,
2013
, “
Numerical Simulation of GaN Growth in a Metalorganic Chemical Vapor Deposition Process
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061006
.
12.
Mitrovic
,
B.
,
Gurary
,
A.
, and
Kadinski
,
L.
,
2006
, “
On the Flow Stability in Vertical Rotating Disc MOCVD Reactors Under a Wide Range of Process Parameters
,”
J. Cryst. Growth
,
287
(
2
), pp.
656
663
.10.1016/j.jcrysgro.2005.10.131
13.
Wu
,
B.
,
Ma
,
R.
, and
Zhang
,
H.
,
2003
, “
Epitaxy Growth Kinetics of GaN Films
,”
J. Cryst. Growth
,
250
(
1–2
), pp.
14
21
.10.1016/S0022-0248(02)02208-X
14.
Jaluria
,
Y.
,
2018
,
Advanced Materials Processing and Manufacturing
,
Springer
,
Cham, Switzerland
.
15.
Wong
,
S.
, and
Jaluria
,
Y.
,
2019
, “
A Numerical and Experimental Study on the Fabrication GaN Films by Chemical Vapor Deposition
,”
ASME J. Manuf. Sci. Eng.
,
142
(
1
), p.
011001
.10.1115/1.4044712
16.
Jumaah
,
O.
, and
Jaluria
,
Y.
,
2019
, “
The Effect of Carrier Gas and Reactor Pressure on Gallium Nitride Growth in MOCVD Manufacturing Process
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
8
), p.
082101
.10.1115/1.4043895
17.
Jaluria
,
Y.
,
2013
, “
Thermal Issues in Materials Processing
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
6
), p.
061701
.10.1115/1.4023586
18.
Bergh
,
A. A.
,
2004
, “
Blue Laser Diode (LD) and Light Emitting Diode (LED) Applications
,”
Phys. Status Solidi A
,
201
(
12
), pp.
2740
2754
.10.1002/pssa.200405124
19.
Cui
,
K. J.
,
Zhu
,
C. Z.
,
Zhang
,
H.
,
Xuan
,
Q.
,
Zou
,
W. Z.
,
Zhang
,
Z. Y.
,
Lin
,
X. C.
,
Zhao
,
N.
, and
Xu
,
J.
,
2017
, “
Blue Laser Diode-Initiated Photosensitive Resins for 3D Printing
,”
J. Mater. Chem. C
,
5
(
46
), pp.
12035
12038
.10.1039/C7TC04303A
20.
Ra
,
Y. H.
,
Navamathavan
,
R.
,
Lee
,
Y. M.
,
Kim
,
D. W.
,
Kim
,
J. S.
,
Lee
,
I. H.
, and
Lee
,
C. R.
,
2010
, “
The Influence of the Working Pressure on the Synthesis of GaN Nanowires by Using MOCVD
,”
J. Cryst. Growth
,
312
(
6
), pp.
770
774
.10.1016/j.jcrysgro.2009.12.056
21.
Surender
,
S.
,
Prabakaran
,
K.
,
Loganathan
,
R.
,
Pradeep
,
S.
,
Singh
,
S.
, and
Baskar
,
K.
,
2017
, “
Effect of Growth Temperature on INGaN/GaN Heterostructures Grown by MOCVD
,”
J. Cryst. Growth
,
468
(
Suppl C
), pp.
249
251
.10.1016/j.jcrysgro.2016.11.061
22.
Fini
,
P.
,
Wu
,
X.
,
Tarsa
,
E. J.
,
Golan
,
Y.
,
Srikant
,
V.
,
Keller
,
S.
,
Denbaars
,
S. P.
, and
Speck
,
J. S.
,
1998
, “
The Effect of Growth Environment on the Morphological and Extended Defect Evolution in GaN Grown by Metalorganic Chemical Vapor Deposition
,”
Jpn. J. Appl. Phys.
,
37
(
Part 1, No. 8
), pp.
4460
4466
.10.1143/JJAP.37.4460
23.
Wang
,
H. X.
,
Li
,
H. D.
,
Amijima
,
Y.
,
Ishihama
,
Y.
, and
Sakai
,
S.
,
2002
, “
Influence of Rotation Speed of Substrate on the Growth Mechanism of INGaN/GaN Multiple Quantum Wells Grown by Six-Wafer Metal Organic Chemical Vapor Deposition System
,”
J. Cryst. Growth
,
235
(
1–4
), pp.
183
187
.10.1016/S0022-0248(01)01998-4
24.
Grzegory
,
I.
, and
Porowski
,
S.
,
2000
, “
GaN Substrates for Molecular Beam Epitaxy Growth of Homoepitaxial Structures
,”
Thin Solid Films
,
367
(
1–2
), pp.
281
289
.10.1016/S0040-6090(00)00689-1
25.
Niebuhr
,
R.
,
Bachem
,
K.
,
Dombrowski
,
K.
,
Maier
,
M.
,
Pletschen
,
W.
, and
Kaufmann
,
U.
,
1995
, “
Basic Studies of Gallium Nitride Growth on Sapphire by Metalorganic Chemical Vapor Deposition and Optical Properties of Deposited Layers
,”
J. Electron. Mater.
,
24
(
11
), pp.
1531
1534
.10.1007/BF02676806
26.
Yang
,
F. H.
,
2014
, “
Modern Metal-Organic Chemical Vapor Deposition (MOCVD) Reactors and Growing Nitride-Based Materials
,”
Nitride Semiconductor Light-Emitting Diodes LEDs: Materials Technologies, and Applications
,
J.-J.
Huang
,
H.-C.
Kuo
, and
S.-C.
Shen
(eds.),
Cambridge
UK
, pp.
27
65
.
27.
Chen
,
Y.
,
Schneider
,
R.
,
Wang
,
S. Y.
,
Kern
,
R. S.
,
Chen
,
C. H.
, and
Kuo
,
C. P.
,
1999
, “
Dislocation Reduction in GaN Thin Films Via Lateral Overgrowth From Trenches
,”
Appl. Phys. Lett.
,
75
(
14
), pp.
2062
2063
.10.1063/1.124916
28.
Nakamura
,
S.
,
Senoh
,
M.
,
Iwasa
,
N.
,
Nagahama
,
S.
,
Yamada
,
T.
, and
Mukai
,
T.
,
1995
, “
Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes
,”
Jpn. J. Appl. Phys.
,
34
(
Part 2, No. 10B
), pp.
L1332
L1335
.10.1143/JJAP.34.L1332
29.
Briot
,
O.
,
Alexis
,
J. P.
,
Sanchez
,
S.
,
Gil
,
B.
, and
Aulombard
,
R. L.
,
1997
, “
Influence of the VIII Molar Ratio on the Structural and Electronic Properties of MOVPE Grown GaN
,”
Solid-State Electron.
,
41
(
2
), pp.
315
317
.
30.
Tarsa
,
E. J.
,
Heying
,
B.
,
Wu
,
X. H.
,
Fini
,
P.
,
DenBaars
,
S. P.
, and
Speck
,
J. S.
,
1997
, “
Homoepitaxial Growth of GaN Under Ga-Stable and N-Stable Conditions by Plasma-Assisted Molecular Beam Epitaxy
,”
J. Appl. Phys.
,
82
(
11
), pp.
5472
5479
.10.1063/1.365575
31.
Schön
,
O.
,
Schineller
,
B.
,
Heuken
,
M.
, and
Beccard
,
R.
,
1998
, “
Comparison of Hydrogen and Nitrogen as Carrier Gas for MOVPE Growth of GaN
,”
J. Cryst. Growth
,
189–190
, pp.
335
339
.10.1016/S0022-0248(98)00287-5
32.
Wang
,
H. X.
,
Amijima
,
Y.
,
Ishihama
,
Y.
, and
Sakai
,
S.
,
2001
, “
Influence of Carrier Gas on the Morphology and Structure of GaN Layers Grown on Sapphire Substrate by Six-Wafer Metal Organic Chemical Vapor Deposition System
,”
J. Cryst. Growth
,
233
(
4
), pp.
681
686
.10.1016/S0022-0248(01)01631-1
33.
Chase
,
M. W.
, Jr.
,
1998
,
NIST-JANAF Thermochemical Tables
, 4th ed., Vol.
2
,
American Institute of Physics
,
College Park, MD
.
34.
George
,
P.
,
Meng
,
J.
, and
Jaluria
,
Y.
,
2015
, “
Optimization of Gallium Nitride Metalorganic Chemical Vapor Deposition Process
,”
ASME J. Heat Transfer-Trans. ASME
,
137
(
6
), p.
061007
.10.1115/1.4029859
You do not currently have access to this content.