Abstract

This paper considers the three-phase lag (TPL) bioheat model to study the phase change phenomena in skin tissue during cryosurgery. The considered TPL model is based on the model of thermo-elasticity, i.e., the combination of the rate of thermal conductivity and new phase lag (τv) due to thermal displacement. An effective heat capacity-based numerical algorithm is established to solve the nonlinear governing equation for biological tissue freezing. Space and time derivatives appearing in the mathematical model are approximated using the radial basis function (RBF) and finite difference method (FDM), respectively. The impact of three nonclassical models, single-phase lag (SPL), dual-phase lag (DPL), and TPL, on the freezing process is studied. The effects of phase lags involved in the models on freezing are also part of this study.

References

1.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
.10.1152/jappl.1948.1.2.93
2.
Liu
,
J.
,
Chen
,
X.
, and
Xu
,
L. X.
,
1999
, “
New Thermal Wave Aspects on Burn Evaluation of Skin Subjected to Instantaneous Heating
,”
IEEE Trans. Biomed. Eng.
,
46
(
4
), pp.
420
428
.10.1109/10.752939
3.
Kaminski
,
W.
,
1990
, “
Hyperbolic Heat Conduction Equation for Materials With a Nonhomogeneous Inner Structure
,”
ASME J. Heat Transfer-Trans. ASME
,
112
(
3
), pp.
555
560
.10.1115/1.2910422
4.
Cattaneo
,
C.
,
1958
, “
Sur Une Forme de L'equation de la Chaleur Eliminant la Paradoxe D'une Propagation Instantantee
,”
C. R. Acad. Sci.
,
247
, pp.
431
433
.
5.
Vernotte
,
P.
,
1958
, “
Les Paradoxes de la Theorie Continue de L'equation de la Chaleur
,”
C. R. Acad. Sci.
,
246
, pp.
3154
3155
.
6.
Tzou
,
D. Y.
,
1995
, “
A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales
,”
ASME J. Heat Transfer-Trans. ASME
,
117
(
1
), pp.
8
16
.10.1115/1.2822329
7.
Shih
,
T.-C.
,
Yuan
,
P.
,
Lin
,
W.-L.
, and
Kou
,
H.-S.
,
2007
, “
Analytical Analysis of the Pennes Bioheat Transfer Equation With Sinusoidal Heat Flux Condition on Skin Surface
,”
Med. Eng. Phys.
,
29
(
9
), pp.
946
953
.10.1016/j.medengphy.2006.10.008
8.
Liu
,
J.
, and
Xu
,
L. X.
,
1999
, “
Estimation of Blood Perfusion Using Phase Shift in Temperature Response to Sinusoidal Heating at the Skin Surface
,”
IEEE Trans. Biomed. Eng.
,
46
(
9
), pp.
1037
1043
.10.1109/10.784134
9.
Deng
,
Z.-S.
, and
Liu
,
J.
,
2002
, “
Analytical Study on Bioheat Transfer Problems With Spatial or Transient Heating on Skin Surface or Inside Biological Bodies
,”
ASME J. Biomech. Eng.
,
124
(
6
), pp.
638
649
.10.1115/1.1516810
10.
Askarizadeh
,
H.
, and
Ahmadikia
,
H.
,
2014
, “
Analytical Analysis of the Dual-Phase-Lag Model of Bioheat Transfer Equation During Transient Heating of Skin Tissue
,”
Heat Mass Transfer
,
50
(
12
), pp.
1673
1684
.10.1007/s00231-014-1373-6
11.
Ahmadikia
,
H.
,
Fazlali
,
R.
, and
Moradi
,
A.
,
2012
, “
Analytical Solution of the Parabolic and Hyperbolic Heat Transfer Equations With Constant and Transient Heat Flux Conditions on Skin Tissue
,”
Int. Commun. Heat Mass Transfer
,
39
(
1
), pp.
121
130
.10.1016/j.icheatmasstransfer.2011.09.016
12.
Liu
,
K.-C.
,
Wang
,
Y.-N.
, and
Chen
,
Y.-S.
,
2012
, “
Investigation on the Bio-Heat Transfer With the Dual-Phase-Lag Effect
,”
Int. J. Therm. Sci.
,
58
, pp.
29
35
.10.1016/j.ijthermalsci.2012.02.026
13.
Kumar
,
D.
,
Singh
,
S.
, and
Rai
,
K.
,
2016
, “
Analysis of Classical Fourier, SPL and DPL Heat Transfer Model in Biological Tissues in Presence of Metabolic and External Heat Source
,”
Heat Mass Transfer
,
52
(
6
), pp.
1089
1107
.10.1007/s00231-015-1617-0
14.
Verma
,
R.
, and
Kumar
,
S.
,
2020
, “
Computational Study on Constant and Sinusoidal Heating of Skin Tissue Using Radial Basis Functions
,”
Comput. Biol. Med.
,
121
, p.
103808
.10.1016/j.compbiomed.2020.103808
15.
Choudhuri
,
S. R.
,
2007
, “
On a Thermoelastic Three-Phase-Lag Model
,”
J. Therm. Stresses
,
30
(
3
), pp.
231
238
.10.1080/01495730601130919
16.
Green
,
A.
, and
Naghdi
,
P.
,
1992
, “
On Undamped Heat Waves in an Elastic Solid
,”
J. Therm. Stresses
,
15
(
2
), pp.
253
264
.10.1080/01495739208946136
17.
Green
,
A.
, and
Naghdi
,
P.
,
1993
, “
Thermoelasticity Without Energy Dissipation
,”
J. Elasticity
,
31
(
3
), pp.
189
208
.10.1007/BF00044969
18.
Zhang
,
Q.
,
Sun
,
Y.
, and
Yang
,
J.
,
2020
, “
Bio-Heat Response of Skin Tissue Based on Three-Phase-Lag Model
,”
Sci. Rep.
,
10
(
1
), pp.
1
14
.
19.
Kumar
,
D.
, and
Rai
,
K.
,
2020
, “
Three-Phase-Lag Bioheat Transfer Model and Its Validation With Experimental Data
,”
Mech. Des. Struct. Mach.
, epub.10.1080/15397734.2020.1779741
20.
Hobiny
,
A.
,
Alzahrani
,
F.
, and
Abbas
,
I.
,
2020
, “
Analytical Estimation of Temperature in Living Tissues Using the TPL Bioheat Model With Experimental Verification
,”
Mathematics
,
8
(
7
), p.
1188
.10.3390/math8071188
21.
Quintanilla
,
R.
, and
Racke
,
R.
,
2008
, “
A Note on Stability in Three-Phase-Lag Heat Conduction
,”
Int. J. Heat Mass Transfer
,
51
(
1–2
), pp.
24
29
.10.1016/j.ijheatmasstransfer.2007.04.045
22.
Akbarzadeh
,
A.
,
Fu
,
J.
, and
Chen
,
Z.
,
2014
, “
Three-Phase-Lag Heat Conduction in a Functionally Graded Hollow Cylinder
,”
Trans. Can. Soc. Mech. Eng.
,
38
(
1
), pp.
155
171
.10.1139/tcsme-2014-0010
23.
Crank
,
J.
,
1984
,
Free and Moving Boundary Problems
, Oxford Science Publications,
Oxford University Press
,
New York
.
24.
Bischof
,
J.
,
Bastacky
,
J.
, and
Rubinsky
,
B.
,
1992
, “
An Analytical Study of Cryosurgery in the Lung
,”
ASME J. Biomech. Eng.
,
114
(
4
), pp.
467
472
.10.1115/1.2894096
25.
Lazaridis
,
A.
,
1970
, “
A Numerical Solution of the Multidimensional Solidification (or Melting) Problem
,”
Int. J. Heat Mass Transfer
,
13
(
9
), pp.
1459
1477
.10.1016/0017-9310(70)90180-8
26.
Shamsundar
,
N.
, and
Sparrow
,
E. M.
,
1975
, “
Analysis of Multidimensional Conduction Phase Change Via the Enthalpy Model
,”
ASME J. Heat Transfer-Trans. ASME
,
97
(
3
), pp.
333
340
.10.1115/1.3450375
27.
Bonacina
,
C.
,
Comini
,
G.
,
Fasano
,
A.
, and
Primicerio
,
M.
,
1973
, “
Numerical Solution of Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
16
(
10
), pp.
1825
1832
.10.1016/0017-9310(73)90202-0
28.
Kumar
,
S.
, and
Katiyar
,
V.
,
2010
, “
Mathematical Modeling of Freezing and Thawing Process in Tissues: A Porous Media Approach
,”
Int. J. Appl. Mech.
,
02
(
03
), pp.
617
633
.10.1142/S1758825110000688
29.
Kumar
,
S.
, and
Katiyar
,
V.
,
2010
, “
Mathematical Modeling of Thawing Problem in Skin and Subcutaneous Tissue
,”
Sixth World Congress of Biomechanics (WCB 2010)
, Singapore, Aug. 1–6, Springer, pp.
1611
1614
.
30.
Ahmadikia
,
H.
, and
Moradi
,
A.
,
2012
, “
Non-Fourier Phase Change Heat Transfer in Biological Tissues During Solidification
,”
Heat Mass Transfer
,
48
(
9
), pp.
1559
1568
.10.1007/s00231-012-1002-1
31.
Singh
,
S.
, and
Kumar
,
S.
,
2014
, “
Numerical Study on Triple Layer Skin Tissue Freezing Using Dual Phase Lag Bio-Heat Model
,”
Int. J. Therm. Sci.
,
86
, pp.
12
20
.10.1016/j.ijthermalsci.2014.06.027
32.
Singh
,
S.
, and
Kumar
,
S.
,
2015
, “
Freezing of Biological Tissues During Cryosurgery Using Hyperbolic Heat Conduction Model
,”
Math. Modell. Anal.
,
20
(
4
), pp.
443
456
.10.3846/13926292.2015.1064486
33.
Singh
,
S.
, and
Kumar
,
S.
,
2016
, “
Numerical Analysis of Triple Layer Skin Tissue Freezing Using non-Fourier Heat Conduction
,”
J. Mech. Med. Biol.
,
16
(
02
), p.
1650017
.10.1142/S0219519416500172
34.
Kumar
,
A.
,
Kumar
,
S.
,
Katiyar
,
V.
, and
Telles
,
S.
,
2017
, “
Dual Phase Lag Bio-Heat Transfer During Cryosurgery of Lung Cancer: Comparison of Three Heat Transfer Models
,”
J. Therm. Biol.
,
69
, pp.
228
237
.10.1016/j.jtherbio.2017.08.005
35.
Kumar
,
A.
,
Kumar
,
S.
,
Katiyar
,
V.
, and
Telles
,
S.
,
2017
, “
Phase Change Heat Transfer During Cryosurgery of Lung Cancer Using Hyperbolic Heat Conduction Model
,”
Comput. Biol. Med.
,
84
, pp.
20
29
.10.1016/j.compbiomed.2017.03.009
36.
Kumar
,
S.
, and
Singh
,
S.
,
2018
, “
Numerical Study on Biological Tissue Freezing Using Dual Phase Lag Bio-Heat Equation
,”
Trends in Biomathematics: Modeling, Optimization and Computational Problems
,
Springer
, Cham, Switzerland, pp.
283
300
.
37.
Deng
,
Z.-S.
, and
Liu
,
J.
,
2004
, “
Numerical Simulation of 3-D Freezing and Heating Problems for Combined Cryosurgery and Hyperthermia Therapy
,”
Numer. Heat Transfer, Part A: Appl.
,
46
(
6
), pp.
587
611
.10.1080/10407780490487740
38.
Li
,
X.
,
Luo
,
P.
,
Qin
,
Q.-H.
, and
Tian
,
X.
,
2020
, “
The Phase Change Thermoelastic Analysis of Biological Tissue With Variable Thermal Properties During Cryosurgery
,”
J. Therm. Stresses
,
43
(
8
), pp.
998
1016
.10.1080/01495739.2020.1764894
39.
Deng
,
Z.-S.
, and
Liu
,
J.
,
2004
, “
Modeling of Multidimensional Freezing Problem During Cryosurgery by the Dual Reciprocity Boundary Element Method
,”
Eng. Anal. Boundary Elem.
,
28
(
2
), pp.
97
108
.10.1016/S0955-7997(03)00128-0
40.
Liu
,
G.
,
2009
,
Meshfree Methods: Moving Beyond the Finite Element Method
, 2nd ed.,
CRC Press
, New York.
41.
Kansa
,
E. J.
,
1990
, “
Multiquadrics—A Scattered Data Approximation Scheme With Applications to Computational Fluid-Dynamics—I Surface Approximations and Partial Derivative Estimates
,”
Comput. Math. Appl.
,
19
(
8–9
), pp.
127
145
.10.1016/0898-1221(90)90270-T
42.
Kansa
,
E. J.
,
1990
, “
Multiquadrics—A Scattered Data Approximation Scheme With Applications to Computational Fluid-Dynamics—II Solutions to Parabolic, Hyperbolic and Elliptic Partial Differential Equations
,”
Comput. Math. Appl.
,
19
(
8–9
), pp.
147
161
.10.1016/0898-1221(90)90271-K
43.
Zerroukat
,
M.
,
Power
,
H.
, and
Chen
,
C.
,
1998
, “
A Numerical Method for Heat Transfer Problems Using Collocation and Radial Basis Functions
,”
Int. J. Numer. Methods Eng.
,
42
(
7
), pp.
1263
1278
.10.1002/(SICI)1097-0207(19980815)42:7<1263::AID-NME431>3.0.CO;2-I
44.
Jiang
,
Z.
,
Su
,
L.
, and
Jiang
,
T.
,
2014
, “
A Meshfree Method for Numerical Solution of Nonhomogeneous Time-Dependent Problems
,”
Abstr. Appl. Anal.
,
2014
, p.
978310
.10.1155/2014/978310
45.
Cao
,
L.
,
Qin
,
Q.-H.
, and
Zhao
,
N.
,
2010
, “
An RBF–MFS Model for Analysing Thermal Behaviour of Skin Tissues
,”
Int. J. Heat Mass Transfer
,
53
(
7–8
), pp.
1298
1307
.10.1016/j.ijheatmasstransfer.2009.12.036
46.
Jamil
,
M.
, and
Ng
,
E.
,
2013
, “
Evaluation of Meshless Radial Basis Collocation Method (RBCM) for Heterogeneous Conduction and Simulation of Temperature Inside the Biological Tissues
,”
Int. J. Therm. Sci.
,
68
, pp.
42
52
.10.1016/j.ijthermalsci.2013.01.007
47.
Fu
,
Z.-J.
,
Xi
,
Q.
,
Ling
,
L.
, and
Cao
,
C.-Y.
,
2017
, “
Numerical Investigation on the Effect of Tumor on the Thermal Behavior Inside the Skin Tissue
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1154
1163
.10.1016/j.ijheatmasstransfer.2016.11.109
48.
Hardy
,
R. L.
,
1990
, “
Theory and Applications of the Multiquadric-Biharmonic Method 20 Years of Discovery 1968–1988
,”
Comput. Math. Appl.
,
19
(
8–9
), pp.
163
208
.10.1016/0898-1221(90)90272-L
49.
Kansa
,
E.
, and
Hon
,
Y.
,
2000
, “
Circumventing the Ill-Conditioning Problem With Multiquadric Radial Basis Functions: Applications to Elliptic Partial Differential Equations
,”
Comput. Math. Appl.
,
39
(
7–8
), pp.
123
137
.10.1016/S0898-1221(00)00071-7
50.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
Clarendon Press
, Oxford, UK.
51.
Vedavarz
,
A.
,
Kumar
,
S.
, and
Moallemi
,
M. K.
,
1994
, “
Significance of Non-Fourier Heat Waves in Conduction
,”
ASME J. Heat Transfer-Trans. ASME
,
116
(
1
), pp.
221
226
.10.1115/1.2910859
52.
Braznikov
,
A.
,
Karpychev
,
V.
, and
Luikova
,
A.
,
1975
, “
One Engineering Method of Calculating Heat Conduction Process
,”
Inzh. Fiz. Zh.
,
28
(
4
), pp.
677
680
.
53.
Mitra
,
K.
,
Kumar
,
S.
,
Vedevarz
,
A.
, and
Moallemi
,
M.
,
1995
, “
Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat
,”
ASME J. Heat Transfer-Trans. ASME
,
117
(
3
), pp.
568
573
.10.1115/1.2822615
54.
Roetzel
,
W.
,
Putra
,
N.
, and
Das
,
S. K.
,
2003
, “
Experiment and Analysis for Non-Fourier Conduction in Materials With Non-Homogeneous Inner Structure
,”
Int. J. Therm. Sci.
,
42
(
6
), pp.
541
552
.10.1016/S1290-0729(03)00020-6
You do not currently have access to this content.