Abstract

Transient heat transfer studies of quenching rotary hollow cylinders with in-line and staggered multiple arrays of jets have been carried out experimentally. The study involves three hollow cylinders (Do/d = 12–24) with rotation speed 10–50 rpm, quenched by subcooled water jets (ΔTsub = 50–80 K) with jet flow rate 2.7–10.9 L/min. The increase in area-averaged and maximum heat flux over quenching surface (Af) has been observed in the studied multiple arrays with constant Qtotal compared to previous studies. Investigation of radial temperature distribution at stagnation point of jet reveals that the footprint of configuration of 4-row array is highlighted in radial distances near the outer surface and vanishes further down toward the inner surface. The influence of the main quenching parameters on local average surface heat flux at stagnation point is addressed in all the boiling regimes where the result indicates jet flow rate provides strongest effect in all the boiling regimes. Effectiveness of magnitude of maximum heat flux in the boiling curve for the studied parameters is reported. The result of spatial and temporal heat flux by radial conduction in the solid presents projection depth of cyclic variation of surface heat flux in the radial axis as it disappears near inner surface of hollow cylinder. In addition, correlations are proposed for area-averaged Nusselt number as well as average and maximum local heat flux at stagnation point of jet for the in-line and staggered multiple arrays.

References

1.
Wolf
,
D.
,
Incropera
,
F.
, and
Viskanta
,
R.
,
1993
, “
Jet Impingement Boiling
,”
Adv. Heat Transfer
,
23
, pp.
1
132
.10.1016/S0065-2717(08)70005-4
2.
Karwa
,
N.
,
Schmidt
,
L.
, and
Stephan
,
P.
,
2012
, “
Hydrodynamics of Quenching With Impinging Free-Surface Jet
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3677
3685
.10.1016/j.ijheatmasstransfer.2012.02.035
3.
Lee
,
S. G.
,
Kaviany
,
M.
,
Kim
,
C.-J.
, and
Lee
,
J.
,
2017
, “
Quasi-Steady Front in Quench Subcooled-Jet Impingement Boiling: Experiment and Analysis
,”
Int. J. Heat Mass Transfer
,
113
(
Suppl C
), pp.
622
634
.10.1016/j.ijheatmasstransfer.2017.05.081
4.
Woodfield
,
P. L.
,
Mozumder
,
A. K.
, and
Monde
,
M.
,
2009
, “
On the Size of the Boiling Region in Jet Impingement Quenching
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
460
465
.10.1016/j.ijheatmasstransfer.2008.05.024
5.
Robidou
,
H.
,
Auracher
,
H.
,
Gardin
,
P.
, and
Lebouché
,
M.
,
2002
, “
Controlled Cooling of a Hot Plate With a Water Jet
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
123
129
.10.1016/S0894-1777(02)00118-8
6.
Hauksson
,
A.
,
Fraser
,
D.
,
Prodanovic
,
V.
, and
Samarasekera
,
I.
,
2004
, “
Experimental Study of Boiling Heat Transfer During Subcooled Water Jet Impingement on Flat Steel Surface
,”
Ironmaking Steelmaking
,
31
(
1
), pp.
51
56
.10.1179/030192304225011098
7.
Hartnett
,
J. P.
,
Irvine
,
T. F.
, and
Cho
,
Y. I.
,
1998
,
Advances in Heat Transfer
, Vol.
23
,
Academic Press
,
San Diego, CA
.
8.
Ravikumar
,
S. V.
,
Jha
,
J. M.
,
Mohapatra
,
S. S.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2014
, “
Experimental Investigation of Effect of Different Types of Surfactants and Jet Height on Cooling of a Hot Steel Plate
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
7
), p.
072102
.10.1115/1.4027182
9.
Agrawal
,
C.
,
Gotherwal
,
D.
,
Singh
,
C.
, and
Singh
,
C.
,
2017
, “
Effect of Surface Thickness on the Wetting Front Velocity During Jet Impingement Surface Cooling
,”
Heat Mass Transfer
,
53
(
2
), pp.
733
741
.10.1007/s00231-016-1855-9
10.
Mozumder
,
A. K.
,
Monde
,
M.
,
Woodfield
,
P. L.
, and
Islam
,
M. A.
,
2006
, “
Maximum Heat Flux in Relation to Quenching of a High Temperature Surface With Liquid Jet Impingement
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
2877
2888
.10.1016/j.ijheatmasstransfer.2006.01.048
11.
Wang
,
B.
,
Guo
,
X.
,
Xie
,
Q.
,
Wang
,
Z.
, and
Wang
,
G.
,
2016
, “
Heat Transfer Characteristic Research During Jet Impinging on Top/Bottom Hot Steel Plate
,”
Int. J. Heat Mass Transfer
,
101
, pp.
844
851
.10.1016/j.ijheatmasstransfer.2016.05.083
12.
Katto
,
Y.
, and
Yokoya
,
S.
,
1988
, “
Critical Heat Flux on a Disk Heater Cooled by a Circular Jet of Saturated Liquid Impinging at the Center
,”
Int. J. Heat Mass Transfer
,
31
(
2
), pp.
219
227
.10.1016/0017-9310(88)90003-8
13.
Vakili
,
S.
,
2011
, “
Analysis of Water Cooling Process of Steel Strips on Runout Table
,”
Ph.D. dissertation
,
The University of British Columbia
,
Vancouver, BC, Canada
.https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24/items/1.0072252
14.
Monde
,
M.
, and
Mitsutake
,
Y.
,
1996
, “
Critical Heat Flux in Forced Convective Subcooled Boiling With Multiple Impinging Jets
,”
ASME J. Heat Transfer-Trans. ASME
,
118
(
1
), pp.
241
243
.10.1115/1.2824051
15.
Mozumder
,
A. K.
,
Mitsutake
,
Y.
, and
Monde
,
M.
,
2014
, “
Subcooled Water Jet Quenching Phenomena for a High Temperature Rotating Cylinder
,”
Int. J. Heat Mass Transfer
,
68
(
0
), pp.
466
478
.10.1016/j.ijheatmasstransfer.2013.09.059
16.
Hall
,
D. E.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
,
2001
, “
Jet Impingement Boiling From a Circular Free-Surface Jet During Quenching: Part 1-Single-Phase Jet
,”
ASME J. Heat Transfer-Trans. ASME
,
123
(
5
), pp.
901
910
.10.1115/1.1389061
17.
Ishigai
,
S.
,
Nakanishi
,
S.
, and
Ochi
,
T.
,
1978
, “
Boiling Heat Transfer for a Plane Water Jet Impinging on a Hot Surface
,”
Proceedings of the Sixth International Heat Transfer Conference
, Vol.
1
,
Hemisphere Publishing Corporation Toronto
,
Canada
, Aug. 7–11, pp.
445
450
.10.1615/IHTC6.860
18.
Jahedi
,
M.
, and
Moshfegh
,
B.
,
2017
, “
Experimental Study of Quenching Process on a Rotating Hollow Cylinder by One Row of Impinging Jets
,”
Ninth World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics (ExHFT-9)
,
Brazil
, June 11–15.http://hig.divaportal.org/smash/get/diva2:1137356/FULLTEXT01.pdf
19.
Jahedi
,
M.
, and
Moshfegh
,
B.
,
2019
, “
Quenching a Rotary Hollow Cylinder by Multiple Configurations of Water-Impinging Jets
,”
Int. J. Heat Mass Transfer
,
137
, pp.
124
137
.10.1016/j.ijheatmasstransfer.2019.03.066
20.
Slayzak
,
S.
,
Viskanta
,
R.
, and
Incropera
,
F.
,
1994
, “
Effects of Interaction Between Adjacent Free Surface Planar Jets on Local Heat Transfer From the Impingement Surface
,”
Int. J. Heat Mass Transfer
,
37
(
2
), pp.
269
282
.10.1016/0017-9310(94)90098-1
21.
Fujimoto
,
H.
,
Hayashi
,
N.
,
Nakahara
,
J.
,
Morisawa
,
K.
,
Hama
,
T.
, and
Takuda
,
H.
,
2016
, “
Boiling Heat Transfer During Impingement of Two or Three Pipe Laminar Jets Onto Moving Steel Sheet
,”
ISIJ Int.
,
56
(
11
), pp.
2016
2021
.10.2355/isijinternational.ISIJINT-2016-295
22.
Jahedi
,
M.
, and
Moshfegh
,
B.
,
2020
, “
Effect of Multiple Water Impinging Jet Array on Quenching a Hot Rotary Hollow Cylinder
,”
Proceedings of the Seventh International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT'20)
,
Avestia Publishing
, Nov. 15–17, p.
171
.
23.
Xie
,
Q.
,
Wang
,
B.
,
Wang
,
Y.
,
Wang
,
Z.
, and
Wang
,
G.
,
2016
, “
Experimental Investigation of High-Temperature Steel Plate Cooled by Multiple Nozzle Arrays
,”
ISIJ Int.
,
56
(
7
), pp.
1210
2015
.10.2355/isijinternational.ISIJINT-2015-691
24.
Lee
,
J.
,
Kim
,
T.
,
Do
,
K.
,
Oh
,
D.
, and
Park
,
J.
,
2014
, “
Effect of Staggered Arrays on Cooling Characteristics of Impinging Water Jet on a Hot Steel Plate
,”
La Metallurgia Italiana
,
Italy
, pp.
13
20
.
25.
Saad
,
Y.
,
2003
,
Iterative Methods for Sparse Linear Systems
, Vol.
82
,
Siam
,
Philadelphia, PA
.
26.
Jahedi
,
M.
,
Berntsson
,
F.
,
Wren
,
J.
, and
Moshfegh
,
B.
,
2018
, “
Transient Inverse Heat Conduction Problem of Quenching a Hollow Cylinder by One Row of Water Jets
,”
Int. J. Heat Mass Transfer
,
117
, pp.
748
756
.10.1016/j.ijheatmasstransfer.2017.10.048
27.
Buckingham
,
E.
,
1914
, “
On Physically Similar Systems; Illustrations of the Use of Dimensional Equations
,”
Phys. Rev.
,
4
(
4
), pp.
345
376
.10.1103/PhysRev.4.345
28.
Seber
,
G. A.
, and
Wild
,
C. J.
,
2003
,
Nonlinear Regression. Hoboken
, Vol.
62
,
Wiley
,
Hoboken, NJ
, p.
63
.
29.
Mozumder
,
A. K.
,
Woodfield
,
P. L.
,
Ashraful Islam
,
M.
, and
Monde
,
M.
,
2007
, “
Maximum Heat Flux Propagation Velocity During Quenching by Water Jet Impingement
,”
Int. J. Heat Mass Transfer
,
50
(
7–8
), pp.
1559
1568
.10.1016/j.ijheatmasstransfer.2006.08.035
You do not currently have access to this content.