Abstract

Pool boiling around a heated cylinder having a diameter larger than the departure diameter of bubbles has been simulated numerically. Thermally uniform heat flux condition has been maintained at the outer surface of the cylinder, submerged at saturated water at atmospheric pressure. Using the volume of fluid type framework of liquid phase fraction in the domain, bubble life cycle around the horizontal cylinder has been analyzed to understand different stages of growth, sliding, merging prior to departure. An effort has also been made to characterize the bubble population, emerging from different sites over the cylindrical surface. The influence of cylinder inclination along its axis on these interfacial features has also been discussed using representative numerical simulation. Temperature profiles of the cylinder surface have been portrayed for both horizontal and inclined situations before presenting respective heat transfer coefficients.

References

1.
Nukiyama
,
S.
,
1966
, “
The Maximum and Minimum Values of the Heat Q Transmitted From Metal to Boiling Water Under Atmospheric Pressure
,”
Int. J. Heat Mass Transfer
,
9
(
12
), pp.
1419
1433
.10.1016/0017-9310(66)90138-4
2.
Berenson
,
P. J.
,
1962
, “
Experiments on Pool-Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
5
(
10
), pp.
985
999
.10.1016/0017-9310(62)90079-0
3.
Kew
,
P. A.
, and
Cornwell
,
K.
,
1997
, “
Correlations for the Prediction of Boiling Heat Transfer in Small-Diameter Channels
,”
Appl. Therm. Eng.
,
17
(
8–10
), pp.
705
715
.10.1016/S1359-4311(96)00071-3
4.
Chen
,
J. C.
,
1966
, “
Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow
,”
Ind. Eng. Chem. Process Des. Develop.
,
5
(
3
), pp.
322
329
.10.1021/i260019a023
5.
Kandlikar
,
S. G.
,
1990
, “
A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes
,”
ASME J. Heat Transfer-Trans. ASME
,
112
(
1
), pp.
219
228
.10.1115/1.2910348
6.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1994
,
Convective Boiling and Condensation
,
Clarendon Press
, Oxford, UK, pp.
220
429
.
7.
Kattan
,
N.
,
Thome
,
J. R.
, and
Favrat
,
D.
,
1998
, “
Flow Boiling in Horizontal Tubes: Part 1—Development of a Diabatic Two-Phase Flow Pattern Map
,”
ASME J. Heat Transfer-Trans. ASME
,
120
(
1
), pp.
140
147
.10.1115/1.2830037
8.
Mohanty
,
R. L.
, and
Das
,
M. K.
,
2017
, “
A Critical Review on Bubble Dynamics Parameters Influencing Boiling Heat Transfer
,”
Renew. Sustain. Energy Rev.
,
78
, pp.
466
494
.10.1016/j.rser.2017.04.092
9.
Fritz
,
W.
,
1935
, “
Berechnung Des Maximalvolumes Von Dampfblasen
,”
Phys. Zeitschr
,
36
, pp.
379
384
.
10.
Zuber
,
N.
,
1959
, “
Hydrodynamic aspects of boiling heat transfer
,” Ph.D. dissertation no. 4439,
United States Atomic Energy Commission, Technical Information Service
.
11.
Cole
,
R.
, and
Rohsenow
,
W. M.
,
1969
, “
Correlation of Bubble Departure Diameters for Boiling of Saturated Liquids
,”
Chem. Eng. Prog. Symp. Ser
,
65
(
92
), pp.
211
213
.
12.
Kim
,
J.
, and
Kim
,
M. H.
,
2006
, “
On the Departure Behaviors of Bubble at Nucleate Pool Boiling
,”
Int. J. Multiphase Flow
,
32
(
10–11
), pp.
1269
1286
.10.1016/j.ijmultiphaseflow.2006.06.010
13.
Jamialahmadi
,
M.
,
Helalizadeh
,
A.
, and
Müller-Steinhagen
,
H.
,
2004
, “
Pool Boiling Heat Transfer to Electrolyte Solutions
,”
Int. J. Heat Mass Trans.
,
47
(
4
), pp.
729
742
.10.1016/j.ijheatmasstransfer.2003.07.025
14.
Alavi Fazel
,
S. A.
, and
Shafaee
,
S. B.
,
2010
, “
Bubble Dynamics for Nucleate Pool Boiling of Electrolyte Solutions
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
8
), p.
081502
.10.1115/1.4001315
15.
Gerardi
,
C.
,
Buongiorno
,
J.
,
Hu
,
L. W.
, and
McKrell
,
T.
,
2010
, “
Study of Bubble Growth in Water Pool Boiling Through Synchronized, Infrared Thermometry and High-Speed Video
,”
Int. J. Heat Mass Trans.
,
53
(
19–20
), pp.
4185
4192
.10.1016/j.ijheatmasstransfer.2010.05.041
16.
Son
,
G.
, and
Dhir
,
V. K.
,
1997
, “
Numerical Simulation of Saturated Film Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
119
(
3
), pp.
525
533
.10.1115/1.2824132
17.
Lee
,
W.
, and
Son
,
G.
,
2011
, “
Numerical Simulation of Boiling Enhancement on a Microstructured Sred ce
,”
Int. Commun. Heat Mass Trans.
,
38
(
2
), pp.
168
173
.10.1016/j.icheatmasstransfer.2010.11.017
18.
Son
,
G.
, and
Dhir
,
V. K.
,
2008
, “
Three-Dimensional Simulation of Saturated Film Boiling on a Horizontal Cylinder
,”
Int. J. Heat Mass Trans.
,
51
(
5–6
), pp.
1156
1167
.10.1016/j.ijheatmasstransfer.2007.04.026
19.
Saha
,
A.
, and
Das
,
A. K.
,
2019
, “
Numerical Study of Boiling Around Wires and Influence of Active or Passive Neighbours on Vapour Film Dynamics
,”
Int. J. Heat Mass Trans.
,
130
, pp.
440
454
.10.1016/j.ijheatmasstransfer.2018.10.117
20.
Samkhaniani
,
N.
, and
Ansari
,
M. R.
,
2017
, “
Numerical Simulation of Superheated Vapor Bubble Rising in Stagnant Liquid
,”
Heat Mass Trans.
,
53
(
9
), pp.
2885
2899
.10.1007/s00231-017-2031-6
21.
Samkhaniani
,
N.
, and
Ansari
,
M. R.
,
2017
, “
The Evaluation of the Diffuse Interface Method for Phase Change Simulations Using OpenFOAM
,”
Heat Trans. Asian Res.
,
46
(
8
), pp.
1173
1203
.10.1002/htj.21268
22.
Klostermann
,
J.
,
Schaake
,
K.
, and
Schwarze
,
R.
,
2013
, “
Numerical Simulation of a Single Rising Bubble by VOF With Surface Compression
,”
Int. J. Numer. Methods Fluids
,
71
(
8
), pp.
960
982
.10.1002/fld.3692
23.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
F.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
24.
Tanasawa
,
I.
,
1991
, “
Advances in Condensation Heat Transfer
,”
Adv. Heat Transfer.
,
21
,
pp.
55
139
.10.1016/S0065-2717(08)70334-4
25.
Reimann
,
M.
, and
Grigull
,
U.
,
1975
, “
Heat Transfer With Free Convection and Film Boiling in the Critical Area of Water and Carbon Dioxide
,”
Heat Mass Trans.
,
8
(
4
), pp.
229
239
.10.1007/BF01002151
26.
Kang
,
M. G.
,
2000
, “
Effect of Tube Inclination on Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
122
(
1
), pp.
188
192
.10.1115/1.521456
27.
Bovard
,
S.
,
Asadinia
,
H.
,
Hosseini
,
G.
, and
Alavi Fazel
,
S. A.
,
2017
, “
Investigation and Experimental Analysis of the Bubble Departure Diameter in Pure Liquids on Horizontal Cylindrical Heater
,”
Heat Mass Trans.
,
53
(
4
), pp.
1199
1210
.10.1007/s00231-016-1885-3
28.
Barthau
,
G.
,
1992
, “
Active Nucleation Site Density and Pool Boiling Heat Transfer—An Experimental Study
,”
Int. J. Heat Mass Trans.
,
35
(
2
), pp.
271
278
.10.1016/0017-9310(92)90266-U
29.
Theofanous
,
T. G.
,
Tu
,
J. P.
,
Dinh
,
A. T.
, and
Dinh
,
T. N.
,
2002
, “
The Boiling Crisis Phenomenon: Part I: Nucleation and Nucleate Boiling Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
26
(
6–7
), pp.
775
792
.10.1016/S0894-1777(02)00192-9
30.
Jakob
,
M.
, and
Fritz
,
W.
,
1931
, “
Experiments on the Evaporation Process
,”
Res. Field Eng. A
,
2
(
12
), pp.
435
447
.
31.
McFadden
,
P. W.
, and
Grassmann
,
P.
,
1962
, “
The Relation Between Bubble Frequency and Diameter During Nucleate Pool Boiling
,”
Int. J. Heat Mass Trans.
,
5
(
3–4
), pp.
169
173
.10.1016/0017-9310(62)90009-1
32.
Zuber
,
N.
,
1963
, “
Nucleate Boiling. The Region of Isolated Bubbles and the Similarity With Natural Convection
,”
Int. J. Heat Mass Trans.
,
6
(
1
), pp.
53
78
.10.1016/0017-9310(63)90029-2
33.
Cole
,
R.
,
1967
, “
Bubble Frequencies and Departure Volumes at Subatmospheric Pressures
,”
AIChE J.
,
13
(
4
), pp.
779
783
.10.1002/aic.690130434
34.
Stephan
,
K.
,
1992
,
Heat Transfer in Condensation and Boiling
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.