Abstract

The loop heat pipe (LHP) is a passive heat sink used in aerospace and electronic devices. As the core component of the LHP, the physical property parameters of porous wick directly affect the overall performance of the LHP. In this paper, the performance of the porous wick is improved by adjusting the pore size, thereby improving the performance of the LHP. The nickel-based double-pore porous wicks are prepared by T225 nickel powder and NaCl particles, and the pore size of the porous wicks can be changed by different cold pressing force (30 kN, 40 kN, 50 kN, and 60 kN). The effects of different cold pressing force on the porosity, permeability, and other physical property parameters are studied when the ratio of pore former is 20 wt.%. In the end, we select the cold pressing force of 30 kN to prepare the porous wick of the LHP. Then the effects of constant load and variable load of the heat transfer performance under different placement elevations are studied. The results show that the heat load range is 10 W–100 W, the minimum evaporator thermal resistance is 0.424 K/W, and the minimum LHP thermal resistance is 0.598 K/W. When β = 0 deg, there is a “backflow” phenomenon at the initial stage of low thermal load. With the increase of thermal load, the “backflow” duration decreases until it disappears, and the startup time becomes shorter. The thermal resistances of the evaporator and LHP decrease rapidly and then slowly increase. When β = –90 deg, the LHP appears to demonstrate “reverse startup” phenomenon.

References

1.
Gerasimov
,
Y. F.
, and
Maidanik
,
Y. F.
,
1974
, “
USSR Inventors Certificate 449213
”.
2.
Hoang
,
T. T.
,
Baldauff
,
R. W.
, and
Cheung
,
K. H.
,
2007
, “
Hybrid Two-Phase Mechanical/Capillary Pumped Loop for High-Capacity Heat Transport
,”
SAE Paper No. 2007-01-3198
.10.4271/2007-01-3198
3.
Park
,
C.
,
Vallury
,
A.
,
Zuo
,
J.
,
Perez
,
J.
, and
Rogers
,
P.
,
2007
, “
Electronics Thermal Management Using Advanced Hybrid Two-Phase Loop Technology
,”
ASME Paper No. 2007-11-880
.https://www.1-act.com/wpcontent/ uploads/2013/01/ASME-Heat-Transfer-2007-Electronics-Thermal-Management-Using-Hybrid-Two-Phase-Loop.pdf
4.
Odagiri
,
K.
,
Nishikawara
,
M.
, and
Nagano
,
H.
,
2016
, “
Microscale Infrared Observation of Liquid Vapor Phase Change Process on the Surface of Porous Media for Loop Heat Pipe
,”
J. Electron. Cool. Therm. Control.
,
6
(
2
), pp.
33
41
.10.4236/jectc.2016.62003
5.
Hatakenaka
,
R.
,
Okamoto
,
A.
,
Mase
,
Y.
,
Murakami
,
M.
, and
Likura
,
H.
,
2011
, “
Visualization of Internal Fluid Behavior in a Miniature Loop Heat Pipe Using Neutron Radiography
,”
AIAA
Paper No. 2011-514010.2514/6.2011-5140.
6.
Okamoto
,
A.
,
Hatakenaka
,
R.
,
Mase
,
Y.
, and
Murakami
,
M.
,
2013
, “
Visualization of a Loop Heat Pipe Using Neutron Radiography
,”
AIAA Paper No. 2010-6031
.10.2514/6.2010-6031
7.
Pastukhov
,
V. G.
,
Maidanik
,
Y. F.
,
Vershinin
,
C. V.
, and
Korukov
,
M. A.
,
2003
, “
Miniature Loop Heat Pipes for Electronics Cooling
,”
Appl. Therm. Eng.
,
23
(
9
), pp.
1125
1135
.10.1016/S1359-4311(03)00046-2
8.
North
,
M. T.
,
Sarraf
,
D. B.
,
Rosenfeld
,
J. H.
,
Maidanik
,
Y. F.
, and
Vershinin
,
S.
,
1997
, “
High Heat Flux Loop Heat Pipes
,”
AIP Conf. Proc.
,
36
(
1
), pp.
561
566
.10.1063/1.52046
9.
Kumar
,
P.
,
Wangaskar
,
B.
,
Khandekar
,
S.
, and
Balani
,
K.
,
2018
, “
Thermal-Fluidic Transport Characteristics of Bi-Porous Wicks for Potential Loop Heat Pipe Systems
,”
Exp. Therm. Fluid Sci.
,
94
, pp.
355
367
.10.1016/j.expthermflusci.2017.12.003
10.
Byon
,
C.
, and
Kim
,
S. J.
,
2012
, “
Capillary Performance of Bi-Porous Sintered Metal Wicks
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4096
4103
.10.1016/j.ijheatmasstransfer.2012.03.051
11.
Li
,
H.
,
Liu
,
Z. C.
,
Chen
,
B. B.
,
Liu
,
W.
,
Chen
,
L.
, and
Yang
,
J.
,
2012
, “
Development of Biporous Wicks for Flat-Plate Loop Heat Pipe
,”
Exp. Therm. Fluid Sci.
,
37
, pp.
91
97
.10.1016/j.expthermflusci.2011.10.007
12.
Maydanik
,
Y. F.
,
Chernysheva
,
M. A.
, and
Pastukhov
,
V. G.
,
2014
, “
Review: Loop Heat Pipes With Flat Evaporators
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
294
307
.10.1016/j.applthermaleng.2014.03.041
13.
Zhang
,
S.
,
Chen
,
J.
,
Sun
,
Y.
,
Li
,
J.
,
Zeng
,
J.
,
Yuan
,
W.
, and
Tang
,
Y.
,
2019
, “
Experimental Study on the Thermal Performance of a Novel Ultra-Thin Aluminum Flat Heat Pipe
,”
Renew. Energy
,
135
, pp.
1133
1143
.10.1016/j.renene.2018.12.097
14.
Liu
,
Z.
,
Gai
,
D.
,
Li
,
H.
,
Wei
,
L.
,
Yang
,
J.
, and
Liu
,
M.
,
2011
, “
Investigation of Impact of Different Working Fluids on the Operational Characteristics of Miniature LHP With Flat Evaporator
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3387
3392
.10.1016/j.applthermaleng.2011.06.023
15.
He
,
S.
,
Liu
,
Z. C.
,
Wang
,
D. D.
,
Liu
,
W.
, and
Yang
,
J. G.
,
2019
, “
Effect of Different charge Ratios on Transient Performance of a Flat Type of the LHP With a Shared Compensation Chamber
,”
Int. J. Heat Mass Transfer
,
138
, pp.
1075
1081
.10.1016/j.ijheatmasstransfer.2019.04.129
16.
Maydanik
,
Y.
,
Pastukhov
,
V.
, and
Chernysheva
,
M.
,
2018
, “
Development and Investigation of a Loop Heat Pipe With a High Heat-Transfer Capacity
,”
Appl. Therm. Eng.
,
130
), pp.
1052
1061
.10.1016/j.applthermaleng.2017.11.084
17.
He
,
S.
,
Liu
,
Z. C.
,
Zhao
,
J.
,
Jiang
,
C.
,
Yang
,
J. G.
, and
Liu
,
W.
,
2016
, “
Experimental Study of an Ammonia Loop Heat Pipe With a Flat Plate Evaporator
,”
Int. J. Heat Mass Transfer
,
102
, pp.
1050
1055
.10.1016/ijheatmasstransfer.2016.07.014
18.
Ji
,
X. B.
,
Wang
,
Y.
,
Xu
,
J. L.
, and
Huang
,
Y. P.
,
2017
, “
Experimental Study of Heat Transfer and Start-Up of Loop Heat Pipe With Multiscale Porous Wicks
,”
Appl. Therm. Eng.
,
117
, pp.
782
798
.10.1016/j.applthermaleng.2017.01.084
19.
Yeh
,
C. C.
,
Chen
,
C. N.
, and
Chen
,
Y. M.
,
2009
, “
Heat Transfer Analysis of a Loop Heat Pipe With Biporous Wicks
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4426
4434
.10.1016/j.ijheatmasstransfer.2009.03.059
20.
Pastukhov
,
V. G.
, and
Maydanik
,
Y. F.
,
2018
, “
Development and Tests of a Loop Heat Pipe With Several Separate Heat Sources
,”
Appl. Therm. Eng.
,
144
, pp.
165
169
.10.1016/j.applthermaleng.2018.08.051
21.
Wang
,
H. F.
,
Lin
,
G. P.
,
Bai
,
L. Z.
,
Tao
,
Y. B.
, and
Wen
,
D. S.
,
2020
, “
Comparative Study of Two Loop Heat Pipes Using R134a as the Working Fluid
,”
Appl. Therm. Eng.
,
164
, p.
114459
.10.1016/j.applthermaleng.2019.114459
22.
Maydanik
,
Y. F.
,
Vershinin
,
S. V.
, and
Chernysheva
,
M. A.
,
2017
, “
Experimental Study of an Ammonia Loop Heat Pipe With a Flat disk shaped vaporator sing a bimetal wall
,”
Appl. Therm. Eng.
,
126
, pp.
643
652
.10.1016/j.applthermaleng.2017.07.152
23.
Wu
,
S. C.
,
Hsieh
,
B. H.
,
Wang
,
D.
, and
Chen
,
Y. M.
,
2015
, “
Manufacture of a Biporous Nickel Wick and Its Effect on LHP Heat Transfer Performance Enhancement
,”
Heat Mass Transfer
,
51
(
11
), pp.
1549
1558
.10.1007/s00231-015-1503-9
24.
Maydanik
,
Y. F.
,
Vershinin
,
S. V.
, and
Chernysheva
,
M. A.
,
2020
, “
Investigation of Thermal Characteristics of a Loop Heat Pipe in a Wide Range of External Conditions
,”
Int. J. Heat Mass Transfer
,
147
, p.
118967
.10.1016/j.ijheatmasstransfer.2019.118967
25.
Liao
,
Q.
, and
Zhao
,
T. S.
,
2000
, “
A Visual Study of Phase-Change Heat Transfer in a Two-Dimensional Porous Structure With a Partial Heating Boundary
,”
Int. J. Heat Mass Transfer
,
43
(
7
), pp.
1089
1102
.10.1016/S0017-9310(99)00212-4
26.
Mottet
,
L.
,
Coquard
,
T.
, and
Prat
,
M.
,
2015
, “
Three Dimensional Liquid and Vapour Distribution in the Wick of Capillary Evaporators
,”
Int. J. Heat Mass Transfer
,
83
, pp.
636
651
.10.1016/j.ijheatmasstransfer.2014.12.048
27.
Launay
,
S.
, and
Mekni
,
N.
,
2010
, “
Specifically Designed Loop Heat Pipe for Quantitative Characterization
,”
Proceedings of 15th IHPC
,
Clemson
,
SC
, Apr. 25–29, pp.
25
30
.
28.
Cimbala
,
J. M.
,
Brenizer
,
J. S.
,
Chuang
,
A. P.
,
Hanna
,
S.
,
Conroy
,
C. T.
,
Ganayni
,
A. E.
, and
Riley
,
D. R.
,
2004
, “
Study of a Loop Heat Pipe Using Neutron Radiography
,”
Appl. Radiat. Isot.
,
61
(
4
), pp.
701
705
.10.1016/j.apradiso.2004.03.104
29.
Zhang
,
Q.
,
Lin
,
G.
,
Shen
,
X.
,
Bai
,
L.
, and
Wen
,
D.
,
2020
, “
Visualization Study on the Heat and Mass Transfer in the Evaporator Compensation Chamber of a Loop Heat Pipe
,”
Appl. Therm. Eng.
,
164
, p.
114472
.10.1016/j.applthermaleng.2019.114472
30.
Guo
,
C.
,
Jiang
,
C.
,
Ma
,
J.
,
Cao
,
Y.
,
Zou
,
Y.
, and
Liu
,
Y.
,
2020
, “
Experimental Study on Comprehensive Performance of Sintering Biporous Wicks Prepared by Salt Dissolution and Cold Pressing Process
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
1
), p.
011902
.10.1115/1.4045140
You do not currently have access to this content.