Abstract

This paper studies the local thermal nonequilibrium (LTNE) model for two-dimensional mixed convection boundary-layer flow over a wedge, which is embedded in a porous medium in the presence of radiation and viscous dissipation. It is considered that the temperature of the fluid and solid phases is not identical; hence, we require two energy equations: one for each phase. The motion of the mainstream and wedge is approximated by the power of distance from the leading boundary layer. The flow and heat transfer in the LTNE phase is governed by the coupled partial differential equations, which are then reduced to nonlinear ordinary differential equations via suitable similarity transformations. Numerical simulations show that when the interphase rate of heat transfer is large, the system attains the local thermal equilibrium (LTE) state and so is for porosity scaled conductivity. When LTNE is strong, the fluid phase reacts faster to the mainstream temperature than the corresponding solid phase. The state of LTE rather depends on radiation and viscous dissipation of the model. Further, numerical solutions successfully predicted the upper and lower branch solutions when the velocity ratio is varied. To assess which of these solutions is practically realizable, an asymptotic analysis on unsteady perturbations for a large time leading to linear stability needs to be performed. This shows that the upper branch solutions are always stable and practically realizable. The physical dynamics behind these results are discussed in detail.

References

1.
Baytas
,
A. C.
,
2003
, “
Thermal Non-Equilibrium Natural Convection in a Square Enclosure Filled With a Heat-Generating Solid Phase, Non-Darcy Porous Medium
,”
Int. J. Energy Res.
,
27
(
10
), pp.
975
988
.10.1002/er.929
2.
McKibbin
,
R.
,
2005
, “
Modeling Heat and Mass Transfer Processes in Geothermal Systems
,”
Handbook of Porous Medium
,
K.
Vafai
, ed., 2nd ed., Taylor & Francis, New York, pp.
545
571
.
3.
Ennis-King
,
J.
,
Preston
,
I.
, and
Paterson
,
L.
,
2005
, “
Onset of Convection in Anisotropic Porous Media Subject to a Rapid Change in Boundary Conditions
,”
Phys. Fluids
,
17
(
8
), p.
084107
.10.1063/1.2033911
4.
Celli
,
M.
,
Rees
,
D. A. S.
, and
Barletta
,
A.
,
2010
, “
The Effect of Local Thermal Non-Equilibrium on Forced Convection Boundary Layer Flow From a Heated Surface in Porous Media
,”
Int. J. Heat Mass Transfer
,
53
(
17–18
), pp.
3533
3539
.10.1016/j.ijheatmasstransfer.2010.04.014
5.
Straughan
,
B.
,
2015
, “
Exchange of Stability in Cattaneo-LTNE Porous Convection
,”
Int. J. Heat Mass Transfer
,
89
, pp.
792
798
.10.1016/j.ijheatmasstransfer.2015.05.084
6.
Rosali
,
H.
,
Ishak
,
A.
, and
Pop
,
I.
,
2016
, “
Mixed Convection Boundary Layer Flow Near the Lower Stagnation Point of a Cylinder Embedded in a Porous Medium Using a Thermal Nonequilibrium Model
,”
ASME J. Heat Transfer
,
138
(
8
), p.
084501
.10.1115/1.4033164
7.
Schlichting
,
H.
, and
Gerstern
,
K.
,
2004
,
Boundary Layer Theory
,
8
th ed.,
Springer-Verlag
,
New Delhi, India
.
8.
Dawood
,
H. K.
,
Mohammed
,
H. A.
,
Sidik
,
N. A. C.
,
Munisamy
,
K. M.
, and
Wahid
,
M. A.
,
2015
, “
Forced, Natural and Mixed-Convection Heat Transfer and Fluid Flow in Annulus: A Review
,”
Int. Commun. Heat Mass Transfer
,
62
, pp.
45
57
.10.1016/j.icheatmasstransfer.2015.01.006
9.
Sutton
,
F. M.
,
1970
, “
Onset of Convection in Porous Channel With Net Through Flow
,”
Phys. Fluids
,
13
(
8
), pp.
1931
1934
.10.1063/1.1693188
10.
Homsy
,
G. M.
, and
Sherwood
,
A. E.
,
1976
, “
Convection Instabilities in Porous Media With Through Flow
,”
AIChE J.
,
22
(
1
), pp.
168
174
.10.1002/aic.690220121
11.
Prats
,
M.
,
1966
, “
The Effects of Horizontal Fluid Flow on Thermally Induced Convection Currents in Porous Mediums
,”
J. Geophys. Res.
,
71
(
20
), pp.
4835
4838
.10.1029/JZ071i020p04835
12.
Wooding
,
R. A.
,
1963
, “
Convection in a Saturated Porous Medium at Large Rayleigh Number and Peclet Number
,”
J. Fluid Mech.
,
15
(
4
), pp.
527
544
.10.1017/S0022112063000434
13.
Combarnous
,
M. A.
, and
Bia
,
P.
,
1971
, “
Combined Free and Forced Convection in the Porous Medium
,”
Soc. Pet. Eng. J
,
11
(
4
), pp.
399
405
.10.2118/3192-PA
14.
Nazar
,
R.
,
Amin
,
N.
, and
Pop
,
I.
,
2004
, “
Unsteady Mixed Convection Boundary-Layer Flow Near the Stagnation Point on a Vertical Surface in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2681
2688
.10.1016/j.ijheatmasstransfer.2004.01.002
15.
Anzelius
,
A.
,
1926
, “
Über Erwärmung Vermittels Durchströmender Medien
,”
Z. Angew. Math. Mech.
,
6
(
4
), pp.
291
294
.10.1002/zamm.19260060404
16.
Schumann
,
T. E. W.
,
1929
, “
Heat Transfer: A Liquid Flowing Through a Porous Prism
,”
J. Franklin Inst.
,
208
(
3
), pp.
405
416
.10.1016/S0016-0032(29)91186-8
17.
Nield
,
D. A.
, and
Bejan
,
A.
,
2013
,
Convection in Porous Media
, 4th ed.,
Springer
,
New York
.
18.
Shivakumara
,
I. S.
,
Lee
,
J.
,
Ravisha
,
M.
, and
Gangadhara Reddy
,
R.
,
2011
, “
Effects of MFD Viscosity and LTNE on the Onset of Ferromagnetic Convection in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2630
2641
.10.1016/j.ijheatmasstransfer.2011.01.022
19.
Straughan
,
B.
,
2013
, “
Porous Convection With Local Thermal Non-Equilibrium Temperatures and With Cattaneo Effects in the Solid
,”
Proc. Math. Phys. Eng. Sci.
,
469
(
2157
), p.
20130187
.10.1098/rspa.2013.0187
20.
Alsabery
,
A. I.
,
Chamkha
,
A. J.
,
Hashim
,
I.
, and
Siddheshwar
,
P. G.
,
2017
, “
Effects of Nonuniform Heating and Wall Conduction on Natural Convection in a Square Porous Cavity Using LTNE Model
,”
ASME J. Heat Transfer
,
139
(
2
), p.
122008
.10.1115/1.4037087
21.
Gogate
,
S. P. S.
,
Bharathi
,
M. C.
, and
Kudenatti
,
R. B.
,
2020
, “
Heat Transfer Through Mixed Convection Boundary Layer in a Porous Medium: LTNE Analysis
,”
Appl. Therm. Eng.
,
179
, p.
115705
.10.1016/j.applthermaleng.2020.115705
22.
Rees
,
D. A. S.
, and
Pop
,
I.
,
2000
, “
Vertical Free Convective Boundary Layer Flow in a Porous Medium Using a Thermal Non-Eqilibrium Model
,”
J. Porous Media
,
3
(
1
), pp.
31
44
.10.1615/JPorMedia.v3.i1.30
23.
Rees
,
D. A. S.
,
2003
, “
Vertical Free Convective Boundary-Layer Flow in a Porous Medium Using a Thermal Non-Equilibrium Model: Elliptical Effects
,”
J. Appl. Math. Phys.
,
54
(
3
), pp.
437
448
.10.1007/s00033-003-0032-4
24.
Kudenatti
,
R. B.
, and
Gogate
,
S. P. S.
,
2020
, “
Two-Phase Microscopic Heat Transfer Model for Three Dimensional Stagnation Boundary Layer Flow in a Porous Medium
,”
ASME J. Heat Transfer
,
142
(
2
), p.
022701
.10.1115/1.4045412
25.
Hussain
,
T.
, and
Afzal
,
N.
,
1988
, “
Mixed Convection Boundary Layer Flow on a Horizontal Plate in a Uniform
,”
Int. J. Heat Mass Transfer
,
31
(
12
), pp.
2505
2516
.10.1016/0017-9310(88)90176-7
26.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
,
2009
, “
The Effects of Transpiration on the Flow and Heat Transfer Over a Moving Permeable Surface in a Parallel Stream
,”
Chem. Eng. J.
,
148
(
1
), pp.
63
67
.10.1016/j.cej.2008.07.040
27.
Turkyilmazoglu
,
M.
,
2010
, “
Unsteady MHD Flow With Variable Viscosity: Applications of Spectral Scheme
,”
Int. J. Therm. Sci.
,
49
(
3
), pp.
563
570
.10.1016/j.ijthermalsci.2009.10.007
28.
Mathie
,
R.
,
Nakamura
,
H.
, and
Markides
,
C. N.
,
2013
, “
Heat Transfer Augmentation in Unsteady Conjugate Thermal Systems—Part II: Applications
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
819
833
.10.1016/j.ijheatmasstransfer.2012.09.017
29.
Taliaferro
,
M. E.
,
Angelino
,
M.
,
Gori
,
F.
, and
Goldstein
,
R. J.
,
2016
, “
Local Heat Transfer on a Finite Width Surface With Laminar Boundary Layer Flow
,”
Appl. Therm. Eng.
,
101
, pp.
686
692
.10.1016/j.applthermaleng.2016.01.030
30.
Makinde
,
O. D.
,
Khan
,
Z. H.
,
Ahmad
,
R.
, and
Khan
,
W. A.
,
2018
, “
Numerical Study of Unsteady Hydromagnetic Radiating Fluid Flow Past a Slippery Stretching Sheet Embedded in a Porous Medium
,”
Phys. Fluids
,
30
(
8
), p.
083601
.10.1063/1.5046331
31.
Riley
,
N.
, and
Weidman
,
P. D.
,
1989
, “
Multiple Solutions of the Falkner-Skan Equation for a Flow Past a Stretching Boundary
,”
SIAM J. Appl. Math.
,
49
(
5
), pp.
1350
1358
.10.1137/0149081
32.
Sachdev
,
P. L.
,
Kudenatti
,
R. B.
, and
Bujurke
,
N. M.
,
2007
, “
Exact Analytic Solution of a Boundary Value Problem for the Falkner-Skan Equation
,”
Stud. Appl. Math.
,
120
(
1
), pp.
1
16
.10.1111/j.1467-9590.2007.00386.x
33.
Mat Yasin
,
M. H.
,
Ishak
,
A.
, and
Pop
,
I.
,
2017
, “
Boundary Layer Flow and Heat Transfer past a Permeable Shrinking Surface Embedded in a Porous Medium with a Second-Order Slip: A Stability Analysis
,”
Appl. Therm. Eng.
,
115
, pp.
1407
1411
.10.1016/j.applthermaleng.2016.08.080
34.
Makinde
,
O. D.
,
Khan
,
W. A.
, and
Culham
,
J. R.
,
2016
, “
MHD Variable Viscosity Reacting Flow Over a Convectively Heated Plate in a Porous Medium With Thermophoresis and Radiative Heat Transfer
,”
Int. J. Heat Mass Transfer
,
93
, pp.
595
604
.10.1016/j.ijheatmasstransfer.2015.10.050
35.
Khan
,
H. M.
, and
Alshomrani
,
A. S.
,
2017
, “
Numerical Simulation for Flow and Heat Transfer to Carreau Fluid With Magnetic Field Effect: Dual Nature Study
,”
J. Magn. Magn. Mater.
,
443
, pp.
13
21
.10.1016/j.jmmm.2017.06.135
36.
Kudenatti
,
R. B.
,
Noor-E-Misbah
., and
Bharathi
,
M. C.
,
2020
, “
Boundary-Layer Flow of the Power-Law Fluid Over a Moving Wedge: A Linear Stability Analysis
,”
Eng. Comput.
, epub.10.1007/s00366-019-00914-x
37.
Rosali
,
H.
,
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
,
2016
, “
Mixed Convection Boundary Layer Flow Past a Vertical Cone Embedded in a Porous Medium Subjected to a Convective Boundary Condition
,”
Propul. Powder Res.
,
5
(
2
), pp.
118
112
.10.1016/j.jppr.2016.04.005
38.
Ahmad
,
K.
,
Hanouf
,
Z.
, and
Ishak
,
A.
,
2016
, “
Mixed Convection Jeffery Fluid Flow Over an Exponentially Stretching Sheet With Magnetohydrodynamic Effect
,”
AIP Adv.
,
6
(
3
), p.
035024
.10.1063/1.4945401
39.
Hayat
,
T.
,
Khan
,
M. I.
,
Imtiaz
,
M.
,
Alsaedi
,
A.
, and
Waqas
,
M.
,
2016
, “
Similarity Transformation Approah for Ferromagnetic Mixed Convection Flow in the Presence of Chemically Reactive Magnetic Dipole
,”
Phys. Fluids
,
28
(
10
), p.
102003
.10.1063/1.4964684
40.
Mustafa
,
M.
,
2017
, “
An Analytical Treatment for MHD Mixed Convection Boundary Layer Flow of Oldroyd-B Fluid Utilizing Non-Fourier Heat Flux Model
,”
Int. J. Heat Mass Transfer
,
113
, pp.
1012
1020
.10.1016/j.ijheatmasstransfer.2017.06.002
41.
Turkyilmazoglu
,
M.
,
2018
, “
Analytical Solutions to Mixed Convection MHD Fluid Flow Induced by a Nonlinearity Deforming Permeable Surface
,”
Commun. Nonlinear Sci. Numer. Simul.
,
63
, pp.
373
379
.10.1016/j.cnsns.2018.04.002
42.
Barletta
,
A.
,
Celli
,
M.
, and
Lagziri
,
H.
,
2015
, “
Instability of a Horizontal Porous Layer With the Local Thermal Non-Equilibrium: Effects of Free Surface and Convective Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
89
, pp.
75
89
.10.1016/j.ijheatmasstransfer.2015.05.026
43.
Turkyilmazoglu
,
M.
,
2012
, “
Multiple Analytic Solutions of Heat and Mass Transfer of Magnetohydrodynamic Slip Flow for Two Types of Viscoelastic Fluids Over a Stretching Surface
,”
ASME J. Heat Transfer
,
134
(
7
), p.
071701
.10.1115/1.4006165
44.
Turkyilmazoglu
,
M.
,
2015
, “
Slip Flow and Heat Transfer Over a Specific Wedge: An Exactly Solvable Falkner–Skan Equation
,”
J. Eng. Math.
,
92
(
1
), pp.
73
81
.10.1007/s10665-014-9758-6
You do not currently have access to this content.