Abstract

The photocatalytic nature of TiO2 finds applications in medicinal field to kill cancer cells, bacteria, and viruses under mild ultraviolet illumination and the antibacterial characteristic of Ag makes the composition AgTiO2 applicable for various purposes. It can also be used in other engineering appliances and industries such as humidity sensor, coolants, and in footwear industry. Hence, this study deals with the analysis of the effects of magnetic field, thermal radiation, and quartic autocatalysis of heterogeneous–homogeneous reaction in an electrically conducting AgTiO2H2O hybrid nanofluid. Furthermore, the gyrotactic microorganisms are used as active mixers to prevent agglomeration and sedimentation of TiO2 that occurs due to its hydrophobic nature. The mathematical model takes the form of partial differential equations with viscosity and thermal conductivity being the functions of volume fraction. These equations are converted to ordinary differential equations by using similarity transformation and are solved by RKF-45 method with the aid of shooting method. It is observed that the increase in the size of the needle enhances the overall performance of the hybrid nanofluid. Furthermore, the temperature of the hybrid nanofluid increases with the increase in volume fraction. It is observed that the friction produced by the Lorentz force increases the temperature of the nanofluid. It is further observed that the heterogeneous reaction parameter has more significant effect on the concentration of bulk fluid than the homogeneous reaction parameter.

References

1.
Platt
,
J. R.
,
1961
, “
‘Bioconvection Patterns’ in Cultures of Free-Swimming Organisms
,”
Science
,
133
(
3466
), pp.
1766
1767
.10.1126/science.133.3466.1766
2.
Ghorai
,
S.
, and
Hill
,
N.
,
2000
, “
Wavelengths of Gyrotactic Plumes in Bioconvection
,”
Bull. Math. Biol.
,
62
(
3
), pp.
429
450
.10.1006/bulm.1999.0160
3.
Choi
,
S. U.
, and
Eastman
,
J. A.
,
1995
, “Enhancing Thermal Conductivity of Fluids With Nanoparticles,”
Argonne National Lab
, Lemont,
IL
, Report No. ANL/MSD/CP-84938.
4.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3707
.10.1016/S0017-9310(99)00369-5
5.
Xuan
,
Y.
, and
Li
,
Q.
,
2000
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
,
21
(
1
), pp.
58
64
.10.1016/S0142-727X(99)00067-3
6.
Sinha
,
A.
, and
Misra
,
J.
,
2014
, “
Effect of Induced Magnetic Field on Magnetohydrodynamic Stagnation Point Flow and Heat Transfer on a Stretching Sheet
,”
ASME J. Heat Transfer
,
136
(
11
), p.
112701
.10.1115/1.4024666
7.
Basir
,
M. F. M.
,
Uddin
,
M.
, and
Ismail
,
A.
,
2017
, “
Unsteady Magnetoconvective Flow of Bionanofluid With Zero Mass Flux Boundary Condition
,”
Sains Malays.
,
46
(
2
), pp.
327
333
.10.17576/jsm-2017-4602-18
8.
Reddy
,
N. B.
,
Poornima
,
T.
, and
Sreenivasulu
,
P.
,
2016
, “
Radiative Heat Transfer Effect on MHD Slip Flow of Dissipating Nanofluid Past an Exponential Stretching Porous Sheet
,”
Int. J. Pure Appl. Math.
,
109
(
9
), pp.
134
142
.http://acadpubl.eu/jsi/2016-109-si/9/16.pdf
9.
Sreenivasulu
,
P. .
,
Poornima
,
T. .
, and
Bhaskar Reddy
,
N. .
,
2016
, “
Thermal Radiation Effects on MHD Boundary Layer Slip Flow past a Permeable Exponential Stretching Sheet in the Presence of Joule Heating and Viscous Dissipation
,”
J. Appl. Fluid Mech.
,
9
(
1
), pp.
267
278
.10.18869/acadpub.jafm.68.224.20368
10.
Parida
,
S.
,
Panda
,
S.
, and
Rout
,
B.
,
2015
, “
MHD Boundary Layer Slip Flow and Radiative Nonlinear Heat Transfer Over a Flat Plate With Variable Fluid Properties and Thermophoresis
,”
Alexandria Eng. J.
,
54
(
4
), pp.
941
953
.10.1016/j.aej.2015.08.007
11.
Nayak
,
M.
,
Shaw
,
S.
, and
Chamkha
,
A. J.
,
2018
, “
Impact of Variable Magnetic Field and Convective Boundary Condition on a Stretched 3D Radiative Flow of Cu-H2O Nanofluid
,”
AMSE JOURNALS-AMSE IIETA Series: Modelling B,
86
(
3
), pp.
658
678
.
12.
Nayak
,
M.
,
Akbar
,
N.
,
Tripathi
,
D.
, and
Pandey
,
V.
,
2017
, “
Three Dimensional MHD Flow of Nanofluid Over an Exponential Porous Stretching Sheet With Convective Boundary Conditions
,”
Therm. Sci. Eng. Prog.
,
3
, pp.
133
140
.10.1016/j.tsep.2017.07.006
13.
Das
,
S.
,
Sensharma
,
A.
,
Jana
,
R.
, and
Sharma
,
R.
,
2017
, “
Slip Flow of Nanofluid Past a Vertical Plate With Ramped Wall Temperature Considering Thermal Radiation
,”
J. Nanofluids
,
6
(
6
), pp.
1054
1064
.10.1166/jon.2017.1392
14.
Kuznetsov
,
A.
,
2005
, “
The Onset of Bioconvection in a Suspension of Gyrotactic Microorganisms in a Fluid Layer of Finite Depth Heated From Below
,”
Int. Commun. Heat Mass Transfer
,
32
(
5
), pp.
574
582
.10.1016/j.icheatmasstransfer.2004.10.021
15.
Kuznetsov
,
A.
,
2005
, “
Thermo-Bioconvection in a Suspension of Oxytactic Bacteria
,”
Int. Commun. Heat Mass Transfer
,
32
(
8
), pp.
991
999
.10.1016/j.icheatmasstransfer.2004.11.005
16.
Kuznetsov
,
A.
,
2005
, “
Investigation of the Onset of Thermo-Bioconvection in a Suspension of Oxytactic Microorganisms in a Shallow Fluid Layer Heated From Below
,”
Theor. Comput. Fluid Dyn.
,
19
(
4
), pp.
287
299
.10.1007/s00162-005-0167-3
17.
Kuznetsov
,
A.
,
2006
, “
The Onset of Thermo-Bioconvection in a Shallow Fluid Saturated Porous Layer Heated From Below in a Suspension of Oxytactic Microorganisms
,”
Eur. J. Mech.-B
,
25
(
2
), pp.
223
233
.10.1016/j.euromechflu.2005.06.003
18.
Aziz
,
A.
,
Khan
,
W.
, and
Pop
,
I.
,
2012
, “
Free Convection Boundary Layer Flow Past a Horizontal Flat Plate Embedded in Porous Medium Filled by Nanofluid Containing Gyrotactic Microorganisms
,”
Int. J. Therm. Sci.
,
56
, pp.
48
57
.10.1016/j.ijthermalsci.2012.01.011
19.
Tham
,
L.
,
Nazar
,
R.
, and
Pop
,
I.
,
2013
, “
Mixed Convection Flow Over a Solid Sphere Embedded in a Porous Medium Filled by a Nanofluid Containing Gyrotactic Microorganisms
,”
Int. J. Heat Mass Transfer
,
62
, pp.
647
660
.10.1016/j.ijheatmasstransfer.2013.03.012
20.
Tham
,
L.
,
Nazar
,
R.
, and
Pop
,
I.
,
2013
, “
Steady Mixed Convection Flow on a Horizontal Circular Cylinder Embedded in a Porous Medium Filled by a Nanofluid Containing Gyrotactic Micro-Organisms
,”
ASME J. Heat Transfer
,
135
(
10
), p.
102601
.10.1115/1.4024387
21.
Shaw
,
S.
,
Kameswaran
,
P.
,
Narayana
,
M.
, and
Sibanda
,
P.
,
2014
, “
Bioconvection in a Non-Darcy Porous Medium Saturated With a Nanofluid and Oxytactic Micro-Organisms
,”
Int. J. BioMath.
,
7
(
1
), p.
1450005
.10.1142/S1793524514500053
22.
Balla
,
C. S.
,
Haritha
,
C. .
,
Naikoti
,
K.
, and
Rashad
,
A. M.
,
2019
, “
Bioconvection in Nanofluid-Saturated Porous Square Cavity Containing Oxytactic Microorganisms
,”
Int. J. Numer. Methods Heat and Fluid Flow
,
29
(
4
), pp.
1448
1465
.10.1108/HFF-05-2018-0238
23.
Sheremet
,
M. A.
, and
Pop
,
I.
,
2014
, “
Thermo-Bioconvection in a Square Porous Cavity Filled by Oxytactic Microorganisms
,”
Transp. Porous Media
,
103
(
2
), pp.
191
205
.10.1007/s11242-014-0297-4
24.
Khan
,
W.
, and
Makinde
,
O.
,
2014
, “
MHD Nanofluid Bioconvection Due to Gyrotactic Microorganisms Over a Convectively Heat Stretching Sheet
,”
Int. J. Therm. Sci.
,
81
, pp.
118
124
.10.1016/j.ijthermalsci.2014.03.009
25.
Khan
,
W.
,
Makinde
,
O.
, and
Khan
,
Z.
,
2014
, “
MHD Boundary Layer Flow of a Nanofluid Containing Gyrotactic Microorganisms Past a Vertical Plate With Navier Slip
,”
Int. J. Heat Mass Transfer
,
74
, pp.
285
291
.10.1016/j.ijheatmasstransfer.2014.03.026
26.
Gireesha
,
B.
,
Kumar
,
K. G.
, and
Manjunatha
,
S.
,
2018
, “
Impact of Chemical Reaction on MHD 3D Flow of a Nanofluid Containing Gyrotactic Microorganism in the Presence of Uniform Heat Source/Sink
,”
Int. J. Chem. React. Eng.
,
16
(
12
), p.
20180013
.
27.
Gireesha
,
B. J.
,
Kumar
,
K. G.
,
Rudraswamy
,
N.
, and
Manjunatha
,
S.
,
2018
, “
Effect of Viscous Dissipation on Three Dimensional Flow of a Nanofluid by Considering a Gyrotactic Microorganism in the Presence of Convective Condition
,”
Defect Diffus. Forum
,
388
, pp.
114
123
.10.4028/www.scientific.net/DDF.388.114
28.
Hayat
,
T.
, and
Nadeem
,
S.
,
2017
, “
Heat Transfer Enhancement With Ag–CuO/Water Hybrid Nanofluid
,”
Results Phys.
,
7
, pp.
2317
2324
.10.1016/j.rinp.2017.06.034
29.
Tayebi
,
T.
, and
Chamkha
,
A. J.
,
2020
, “
Entropy Generation Analysis Due to MHD Natural Convection Flow in a Cavity Occupied With Hybrid Nanofluid and Equipped With a Conducting Hollow Cylinder
,”
J. Therm. Anal Calorim.
,
139
(
3
), pp.
2165
2179
.10.1007/s10973-019-08651-5
30.
Ghalambaz
,
M.
,
Doostani
,
A.
,
Izadpanahi
,
E.
, and
Chamkha
,
A. J.
,
2020
, “
Conjugate Natural Convection Flow of Ag–MgO/Water Hybrid Nanofluid in a Square Cavity
,”
J. Therm. Anal. Calorim.
,
139
(
3
), pp.
2321
2336
.10.1007/s10973-019-08617-7
31.
Dogonchi
,
A.
,
Nayak
,
M.
,
Karimi
,
N.
,
Chamkha
,
A. J.
, and
Ganji
,
D. D.
,
2020
, “
Numerical Simulation of Hydrothermal Features of Cu–H2O Nanofluid Natural Convection Within a Porous Annulus Considering Diverse Configurations of Heater
,”
J. Therm. Anal Calorim.
, 141, pp.
2109
2125
.https://link.springer.com/article/10.1007/s10973-020-09419-y
32.
Manjunatha
,
S.
,
Kuttan
,
B. A.
,
Jayanthi
,
S.
,
Chamkha
,
A.
, and
Gireesha
,
B.
,
2019
, “
Heat Transfer Enhancement in the Boundary Layer Flow of Hybrid Nanofluids Due to Variable Viscosity and Natural Convection
,”
Heliyon
,
5
(
4
), p.
e01469
.10.1016/j.heliyon.2019.e01469
33.
Animasaun
,
I. L.
,
2015
, “
Dynamics of Unsteady MHD Convective Flow With Thermophoresis of Particles and Variable Thermo-Physical Properties Past a Vertical Surface Moving Through Binary Mixture
,”
Open J. Fluid Dyn.
,
5
(
2
), pp.
106
120
.10.4236/ojfd.2015.52013
34.
Animasaun
,
I.
,
2015
, “
Effects of Thermophoresis, Variable Viscosity and Thermal Conductivity on Free Convective Heat and Mass Transfer of Non-Darcian MHD Dissipative Casson Fluid Flow With Suction and Nth Order of Chemical Reaction
,”
J. Niger. Math. Soc.
,
34
(
1
), pp.
11
31
.10.1016/j.jnnms.2014.10.008
35.
Animasaun
,
I. L.
,
2016
, “
47 nm Alumina–Water Nanofluid Flow Within Boundary Layer Formed on Upper Horizontal Surface of Paraboloid of Revolution in the Presence of Quartic Autocatalysis Chemical Reaction
,”
Alexandria Eng. J.
,
55
(
3
), pp.
2375
2389
.10.1016/j.aej.2016.04.030
36.
Chaudhary
,
M.
, and
Merkin
,
J.
,
1995
, “
A Simple Isothermal Model for Homogeneous-Heterogeneous Reactions in Boundary-Layer Flow—I: Equal Diffusivities
,”
Fluid Dyn. Res.
,
16
(
6
), pp.
311
333
.10.1016/0169-5983(95)00015-6
37.
Chaudhary
,
M.
, and
Merkin
,
J.
,
1995
, “
A Simple Isothermal Model for Homogeneous-Heterogeneous Reactions in Boundary-Layer Flow—II: Different Diffusivities for Reactant and Autocatalyst
,”
Fluid Dyn. Res.
,
16
(
6
), pp.
335
359
.10.1016/0169-5983(95)90813-H
38.
Makinde
,
O.
, and
Animasaun
,
I.
,
2016
, “
Bioconvection in MHD Nanofluid Flow With Nonlinear Thermal Radiation and Quartic Autocatalysis Chemical Reaction Past an Upper Surface of a Paraboloid of Revolution
,”
Int. J. Therm. Sci.
,
109
, pp.
159
171
.10.1016/j.ijthermalsci.2016.06.003
39.
Lee
,
L. L.
,
1967
, “
Boundary Layer Over a Thin Needle
,”
Phys. Fluids
,
10
(
4
), pp.
820
822
.10.1063/1.1762194
40.
Narain
,
J. P.
, and
Uberoi
,
M. S.
,
1972
, “
Combined Forced and Free-Convection Heat Transfer From Vertical Thin Needles in a Uniform Stream
,”
Phys. Fluids
,
15
(
11
), pp.
1879
1882
.10.1063/1.1693798
41.
Narain
,
J. P.
, and
Uberoi
,
M. S.
,
1973
, “
Combined Forced and Free-Convection Over Thin Needles
,”
Int. J. Heat Mass Transfer
,
16
(
8
), pp.
1505
1512
.10.1016/0017-9310(73)90179-8
42.
Chen
,
L.
, and
Smith
,
T.
,
1978
, “
Forced Convection Heat Transfer From Non-Isothermal Thin Needles
,”
ASME J. Heat Transfer
,
100
(
2
), pp.
358
362
.10.1115/1.3450809
43.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
,
2007
, “
Boundary Layer Flow Over a Continuously Moving Thin Needle in a Parallel Free Stream
,”
Chin. Phys. Lett.
,
24
(
10
), pp.
2895
2897
.10.1088/0256-307X/24/10/051
44.
Ahmad
,
S.
,
Arifin
,
N. M.
,
Nazar
,
R.
, and
Pop
,
I.
,
2008
, “
Mixed Convection Boundary Layer Flow Along Vertical Thin Needles: Assisting and Opposing Flows
,”
Int. Commun. Heat Mass Transfer
,
35
(
2
), pp.
157
162
.10.1016/j.icheatmasstransfer.2007.07.005
45.
Grosan
,
T.
, and
Pop
,
I.
,
2011
, “
Forced Convection Boundary Layer Flow Past Nonisothermal Thin Needles in Nanofluids
,”
ASME J. Heat Transfer
,
133
(
5
), p.
054503
.10.1115/1.4003059
46.
Hayat
,
T.
,
Khan
,
M. I.
,
Farooq
,
M.
,
Yasmeen
,
T.
, and
Alsaedi
,
A.
,
2016
, “
Water-Carbon Nanofluid Flow With Variable Heat Flux by a Thin Needle
,”
J. Mol. Liq.
,
224
, pp.
786
791
.10.1016/j.molliq.2016.10.069
47.
Sung-Suh
,
H. M.
,
Choi
,
J. R.
,
Hah
,
H. J.
,
Koo
,
S. M.
, and
Bae
,
Y. C.
,
2004
, “
Comparison of ag Deposition Effects on the Photocatalytic Activity of Nanoparticulate TiO2 Under Visible and UV Light Irradiation
,”
J. Photochem. PhotoBiol. A
,
163
(
1–2
), pp.
37
44
.10.1016/S1010-6030(03)00428-3
48.
Sclafani
,
A.
, and
Herrmann
,
J.-M.
,
1998
, “
Influence of Metallic Silver and of Platinum-Silver Bimetallic Deposits on the Photocatalytic Activity of Titania (Anatase and Rutile) in Organic and Aqueous Media
,”
J. Photochem. PhotoBiol. A
,
113
(
2
), pp.
181
188
.10.1016/S1010-6030(97)00319-5
49.
Yin
,
S.
,
Hasegawa
,
H.
,
Maeda
,
D.
,
Ishitsuka
,
M.
, and
Sato
,
T.
,
2004
, “
Synthesis of Visible-Light-Active Nanosize Rutile Titania Photocatalyst by Low Temperature Dissolution–Reprecipitation Process
,”
J. Photochem. PhotoBiol. A
,
163
(
1–2
), pp.
1
8
.10.1016/S1010-6030(03)00289-2
50.
Amirsom
,
N.
,
Uddin
,
M. J.
, and
Ismail
,
A. I. M.
,
2019
, “
MHD Boundary Layer Bionanoconvective Non-Newtonian Flow Past a Needle With Stefan Blowing
,”
Heat Transfer
,
48
(
2
), pp.
727
743
.10.1002/htj.21403
51.
Rosseland
,
S.
,
2013
,
Astrophysik: Auf Atomtheoretischer Grundlage
, Vol.
11
,
Springer-Verlag
, Berlin.
52.
Tian
,
X.-Y.
,
Li
,
B.-W.
, and
Zhang
,
J.-K.
,
2017
, “
The Effects of Radiation Optical Properties on the Unsteady 2D Boundary Layer MHD Flow and Heat Transfer Over a Stretching Plate
,”
Int. J. Heat Mass Transfer
,
105
, pp.
109
123
.10.1016/j.ijheatmasstransfer.2016.09.060
53.
Qasim
,
M.
,
Khan
,
Z. H.
,
Khan
,
W. A.
, and
Shah
,
I. A.
,
2014
, “
MHD Boundary Layer Slip Flow and Heat Transfer of Ferrofluid Along a Stretching Cylinder With Prescribed Heat Flux
,”
PLoS One
,
9
(
1
), p.
e83930
.10.1371/journal.pone.0083930
54.
Suleman
,
M.
,
Ramzan
,
M.
,
Ahmad
,
S.
,
Lu
,
D.
,
Muhammad
,
T.
, and
Chung
,
J. D.
,
2019
, “
A Numerical Simulation of Silver–Water Nanofluid Flow With Impacts of Newtonian Heating and Homogeneous–Heterogeneous Reactions Past a Nonlinear Stretched Cylinder
,”
Symmetry
,
11
(
2
), p.
295
.10.3390/sym11020295
You do not currently have access to this content.