Abstract

The oil-water-gas separation is a critical aspect of the treatment of production flows in the oil industry. The segregation of gas bubbles and/or water droplets dispersed in viscous oil by an in-line swirling flow separator has been considered by the oil industry for topside and subsea applications. For high viscosity oils, heat transfer processes can be affected. Works addressing these applications are rare in the literature. In this way, the article presents a numerical investigation on heat transfer characteristics in a decaying swirling flow, considering the effects of viscosity dissipation due to the high viscosity of the fluid. The flow has both velocity and temperature profiles developing simultaneously in a tube with a constant diameter having a uniform wall heat flux in a laminar flow regime, particularly the behavior of heat transfer characteristics for strongly swirling numbers considering viscous dissipation. Three swirl numbers (S = 0.0, 0.3, and 0.7) and five Brinkman numbers (Br = 0.0, 0.1, 0.5, 1.0, and 10.0) were investigated and the effects of those parameters on the dimensionless temperature profiles, Nusselt number and viscous dissipation function were examined. The heat transfer analysis indicated that the swirling flow affects the fluid's axial and radial temperature distribution. They promoted increased fluid in wall temperature and bulk temperature and affected the local Nusselt number distribution.

References

1.
Bjørkhaug
,
M.
,
Johannesen
,
B.
, and
Eidsmo
,
G. S.
,
2011
, “
Flow Induced Inline Separation (FIIS) De-Watering Tests at the Gullfaks Field
,” Proceedings—SPE Annual Technical Conference and Exhibition,
Society of Petroleum Engineers
(
SPE
), Denver, CO, Oct. 30–Nov. 2, pp.
2336
2346
.10.2118/146688-MS
2.
Van Campen
,
L.
,
Mudde
,
R. F.
,
Slot
,
J.
, and
Hoeijmakers
,
H.
,
2012
, “
A Numerical and Experimental Survey of a Liquid-Liquid Axial Cyclone
,”
Int. J. Chem. React. Eng.
,
10
(
1
), pp.
1
17
.10.1515/1542-6580.3003
3.
McClimans
,
O. T.
, and
Fantoft
,
R.
,
2006
, “
Status and New Developments in Subsea Processing
,”
Society of Petroleum Engineers (SPE)
, Offshore Technology Conference, Houston, TX, May 1–4, pp.
1
10
.10.4043/17984-ms
4.
Moreno-Trejo
,
J.
, and
Markeset
,
T.
,
2012
, “
Identifying Challenges in the Development of Subsea Petroleum Production Systems
,”
IFIP Advances in Information and Communication Technology
,
Springer
,
New York LLC
, pp.
287
295
.
5.
Perissinotto
,
R. M.
,
Monte Verde
,
W.
,
Gallassi
,
M.
,
Gonçalves
,
G. F. N.
,
de Castro
,
M. S.
,
Carneiro
,
J.
,
Biazussi
,
J. L.
, and
Bannwart
,
A. C.
,
2019
, “
Experimental and Numerical Study of Oil Drop Motion Within an ESP Impeller
,”
J. Pet. Sci. Eng.
,
175
, pp.
881
895
.10.1016/j.petrol.2019.01.025
6.
Trevisan
,
F. E.
,
2009
, “
Modeling and Visualization of Air and Viscous Liquid in Electrical Submersible Pump
,” Ph.D. thesis,
The University of Tulsa
, Tulsa, OK.
7.
Trevisan
,
F.
, and
Prado
,
M.
,
2011
, “
Experimental Investigation of the Viscous Effect on Two-Phase-Flow Patterns and Hydraulic Performance of Electrical Submersible Pumps
,”
J. Can. Pet. Technol.
,
50
(
04
), pp.
45
52
.10.2118/134089-PA
8.
Barrios
,
L.
,
Rojas
,
M.
,
Monteiro
,
G.
, and
Sleight
,
N.
,
2017
, “
Brazil Field Experience of ESP Performance With Viscous Emulsions and High Gas Using Multi-Vane Pump MVP and High Power ESPs
,”
Society of Petroleum Engineers—SPE Electric Submersible Pump Symposium, Society of Petroleum Engineers
, The Woodlands, TX, Apr. 24–28, pp.
38
48
.10.2118/185141-ms
9.
Patil
,
A.
, and
Morrison
,
G.
,
2019
, “
Affinity Law Modified to Predict the Pump Head Performance for Different Viscosities Using the Morrison Number
,”
ASME J. Fluids Eng. Trans.
,
141
(
2
), p.
021203
.10.1115/1.4041066
10.
Barrios
,
L.
,
Scott
,
S.
,
Rivera
,
R.
, and
Sheth
,
K.
,
2012
, “
ESP Technology Maturation: Subsea Boosting System With High GOR and Viscous Fluids
,”
Proceedings—SPE Annual Technical Conference and Exhibition
, OnePetro, San Antonio, TX, Oct. 8–10, pp.
1580
1601
.10.2118/159186-ms
11.
Correra
,
S.
,
Iovane
,
M.
, and
Pinneri
,
S.
,
2016
, “
Role of Electrical Submerged Pumps in Enabling Asphaltene-Stabilized Emulsions
,”
Energy Fuels
,
30
(
5
), pp.
3622
3629
.10.1021/acs.energyfuels.5b02083
12.
Ou
,
J. W.
, and
Cheng
,
K. C.
,
1973
, “
Viscous Dissipation Effects on Thermal Entrance Region Heat Transfer in Pipes With Uniform Wall Heat Flux
,”
Appl. Sci. Res.
,
28
(
1
), pp.
289
301
.10.1007/BF00413074
13.
Heaton
,
H. S.
,
Reynolds
,
W. C.
, and
Kays
,
W. M.
,
1964
, “
Heat Transfer in Annular Passages. Simultaneous Development of Velocity and Temperature Fields in Laminar Flow
,”
Int. J. Heat Mass Transfer
,
7
(
7
), pp.
763
781
.10.1016/0017-9310(64)90006-7
14.
Siegel
,
R.
,
Sparrow
,
E. M.
, and
Hallman
,
T. M.
,
1958
, “
Steady Laminar Heat Transfer in a Circular Tube With Prescribed Wall Heat Flux
,”
Appl. Sci. Res. Sect. A
,
7
(
5
), pp.
386
392
.10.1007/BF03184999
15.
Shah
,
R. K.
, and London, A. L,
1978
, “Laminar Flow Forced Convection in Ducts,” 1st ed.,
Academic Press, New York
.
16.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
, “Convecitve Heat and Mass Transfer,” 3rd ed., McGraw-Hill, New York.
17.
Brinkman
,
H. C.
,
1951
, “
Heat Effects in Capillary Flow I
,”
Appl. Sci. Res. A
,
2
(
1
), pp.
120
124
.10.1007/BF00411976
18.
Lin
,
T. F.
,
Hawks
,
K. H.
, and
Leidenfrost
,
W.
,
1983
, “
Analysis of Viscous Dissipation Effect on Thermal Entrance Heat Transfer in Laminar Pipe Flows With Convective Boundary Conditions
,”
Wärme Stoffubertragung
,
17
(
2
), pp.
97
105
.10.1007/BF01007225
19.
Basu
,
T.
, and
Roy
,
D. N.
,
1985
, “
Laminar Heat Transfer in a Tube With Viscous Dissipation
,”
Int. J. Heat Mass Transfer
,
28
(
3
), pp.
699
701
.10.1016/0017-9310(85)90191-7
20.
Aydin
,
O.
,
2005
, “
Effects of Viscous Dissipation on the Heat Transfer in Forced Pipe Flow. Part 1: Both Hydrodynamically and Thermally Fully Developed Flow
,”
Energy Convers. Manag.
,
46
(
5
), pp.
757
769
.10.1016/j.enconman.2004.05.004
21.
Aydin
,
O.
,
2005
, “
Effects of Viscous Dissipation on the Heat Transfer in a Forced Pipe Flow. Part 2: Thermally Developing Flow
,”
Energy Convers. Manag.
,
46
(
18–19
), pp.
3091
3102
.10.1016/j.enconman.2005.03.011
22.
Barletta
,
A.
,
1996
, “
On Forced Convection in a Circular Duct With Slug Flow and Viscous Dissipation
,”
Int. Commun. Heat Mass Transfer
,
23
(
1
), pp.
69
78
.10.1016/0735-1933(95)00085-2
23.
Barletta
,
A.
, and
Zanchini
,
E.
,
1997
, “
Forced Convection in the Thermal Entrance Region of a Circular Duct With Slug Flow and Viscous Dissipation
,”
Int. J. Heat Mass Transfer
,
40
(
5
), pp.
1181
1190
.10.1016/0017-9310(96)00212-8
24.
Barletta
,
A.
, and
Magyari
,
E.
,
2007
, “
Forced Convection With Viscous Dissipation in the Thermal Entrance Region of a Circular Duct With Prescribed Wall Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
26
35
.10.1016/j.ijheatmasstransfer.2006.06.036
25.
Hay
,
N.
, and
West
,
P. D.
,
1975
, “
Heat Transfer in Free Swirling Flow in a Pipe
,”
ASME J. Heat Transfer-Trans. ASME
,
97
(
3
), pp.
411
416
.10.1115/1.3450390
26.
Mukherjee
,
P.
,
Biswas
,
G.
, and
Nag
,
P. K.
,
1987
, “
Second-Law Analysis of Heat Transfer in Swirling Flow Through a Cylindrical Duct
,”
ASME J. Heat Transfer-Trans. ASME
,
109
(
2
), pp.
308
313
.10.1115/1.3248081
27.
Salce
,
A.
, and
Simon
,
T. W.
,
1991
, “
Investigation of the Effects of Flow Swirl on Heat Transfer Inside a Cylindrical Cavity
,”
ASME J. Heat Transfer-Trans. ASME
,
113
(
2
), pp.
348
354
.10.1115/1.2910568
28.
Najafi
,
A. F.
,
Mousavian
,
S. M.
, and
Amini
,
K.
,
2011
, “
Numerical Investigations on Swirl Intensity Decay Rate for Turbulent Swirling Flow in a Fixed Pipe
,”
Int. J. Mech. Sci.
,
53
(
10
), pp.
801
811
.10.1016/j.ijmecsci.2011.06.011
29.
Saqr
,
K. M.
, and
Wahid
,
M. A.
,
2014
, “
Effects of Swirl Intensity on Heat Transfer and Entropy Generation in Turbulent Decaying Swirl Flow
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
486
493
.10.1016/j.applthermaleng.2014.05.059
30.
Kitoh
,
O.
,
1991
, “
Experimental Study of Turbulent Swirling Flow in a Straight Pipe
,”
J. Fluid Mech.
,
225
, pp.
445
479
.10.1017/S0022112091002124
31.
Zaherzadeh
,
N. H.
, and
Jagadish
,
B. S.
,
1975
, “
Heat Transfer in Decaying Swirl Flows
,”
Int. J. Heat Mass Transfer
,
18
(
7–8
), pp.
941
944
.10.1016/0017-9310(75)90187-8
32.
Yilmaz
,
M.
,
Comakli
,
O.
,
Yapici
,
S.
, and
Sara
,
O. N.
,
2003
, “
Heat Transfer and Friction Characteristics in Decaying Swirl Flow Generated by Different Radial Guide Vane Swirl Generators
,”
Energy Convers. Manag.
,
44
(
2
), pp.
283
300
.10.1016/S0196-8904(02)00053-5
33.
Yilmaz
,
M.
,
Yapici
,
S.
,
Çomakli
,
Ö.
, and
Şara
,
O. N.
,
2002
, “
Energy Correlation of Heat Transfer and Enhancement Efficiency in Decaying Swirl Flow
,”
Heat Mass Transfer Stoffuebertragung
,
38
(
4–5
), pp.
351
358
.10.1007/s002310100207
34.
Yilmaz
,
M.
,
Çomakli
,
Ö.
, and
Yapici
,
S.
,
1999
, “
Enhancement of Heat Transfer by Turbulent Decaying Swirl Flow
,”
Energy Convers. Manag.
,
40
(
13
), pp.
1365
1376
.10.1016/S0196-8904(99)00030-8
35.
Oullette
,
W. R.
, and
Bejan
,
A.
,
1980
, “
Conservation of Available Work (Exergy) by Using Promoters of Swirl Flow in Forced Convection Heat Transfer
,”
Energy
,
5
(
7
), pp.
587
596
.10.1016/0360-5442(80)90039-0
36.
Martemianov
,
S.
, and
Okulov
,
V. L.
,
2004
, “
On Heat Transfer Enhancement in Swirl Pipe Flows
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2379
2393
.10.1016/j.ijheatmasstransfer.2003.11.005
37.
Bali
,
T.
,
1998
, “
Modelling of Heat Transfer and Fluid Flow for Decaying Swirl Flow in a Circular Pipe
,”
Int. Commun. Heat Mass Transfer
,
25
(
3
), pp.
349
358
.10.1016/S0735-1933(98)00022-0
38.
Aydin
,
O.
,
Avci
,
M.
,
Markal
,
B.
, and
Yusuf Yazici
,
M.
,
2014
, “
An Experimental Study on the Decaying Swirl Flow in a Tube
,”
Int. Commun. Heat Mass Transfer
,
55
, pp.
22
28
.10.1016/j.icheatmasstransfer.2014.04.012
39.
Ahmadvand
,
M.
,
Najafi
,
A. F.
, and
Shahidinejad
,
S.
,
2010
, “
An Experimental Study and CFD Analysis Towards Heat Transfer and Fluid Flow Characteristics of Decaying Swirl Pipe Flow Generated by Axial Vanes
,”
Meccanica
,
45
(
1
), pp.
111
129
.10.1007/s11012-009-9228-9
40.
Gül
,
H.
,
2006
, “
Enhancement of Heat Transfer in a Circular Tube With Tangential Swirl Generators
,”
Exp. Heat Transfer
,
19
(
2
), pp.
81
93
.10.1080/08916150500318422
41.
Kurtbaş
,
İ.
,
Gülçimen
,
F.
,
Kılıçarslan
,
A.
, and
Kaya
,
M.
,
2014
, “
Effect of Swirl Generator Inserted Into a Tube on Exergy Transfer: Decaying Flow
,”
Exp. Heat Transfer
,
27
(
5
), pp.
472
487
.10.1080/08916152.2013.803175
42.
Yapici
,
S.
,
1999
, “
Energetic Correlation of Local Mass Transfer in Swirling Pipe Flow
,”
Ind. Eng. Chem. Res.
,
38
(
4
), pp.
1712
1717
.10.1021/ie9803927
43.
Yilbas
,
B. S.
,
Shuja
,
S. Z.
, and
Budair
,
M. O.
,
1999
, “
Second Law Analysis of a Swirling Flow in a Circular Duct With Restriction
,”
Int. J. Heat Mass Transfer
,
42
(
21
), pp.
4027
4041
.10.1016/S0017-9310(99)00066-6
44.
Patankar
,
S. V.
,
1980
, “Numerical Heat Transfer and Fluid Flow,” 1st ed., CRC Press, Boca Raton, FL.
45.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
46.
Churchill
,
S. W.
, and
Ozoe
,
H.
,
1973
, “
Correlations for Laminar Forced Convection With Uniform Heating in Flow Over a Plate and in Developing and Fully Developed Flow in a Tube
,”
ASME J. Heat Transfer-Trans. ASME
,
95
(
1
), pp.
78
84
.10.1115/1.3450009
47.
Rocha
,
A. D.
,
Bannwart
,
A. C.
, and
Ganzarolli
,
M. M.
,
2017
, “
Effects of Inlet Boundary Conditions in an Axial Hydrocyclone
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
9
), pp.
3425
3437
.10.1007/s40430-017-0835-4
You do not currently have access to this content.