Abstract

Qualified thermal management is an important guarantee for the stable work of electronic devices. However, the increasingly complex cooling structure needs several hours or even longer to simulate, which hinders finding the optimal heat dissipation design in the limited space. Herein, an approach based on conditional generative adversarial network (cGAN) is reported to bridge complex geometry and physical field. The established end-to-end model not only predicted the maximum temperature with high precision but also captured real field details in the generated image. The impact of amount of training data on model prediction performance was discussed, and the performance of the models fine-tuned and trained from scratch was also compared in the case of less training data or using in new electronic devices. Furthermore, the high expansibility of geometrically encoded labels makes this method possible to be used in the heat dissipation analysis of more electronic devices. More importantly, this approach, compared to the grid-based simulation, accelerates the process by several orders of magnitude and saves a large amount of energy, which can vastly improve the efficiency of the thermal management design of electronic devices.

References

1.
Bell
,
L. E.
,
2008
, “
Cooling, Heating, Generating Power, and Recovering Waste Heat With Thermoelectric Systems
,”
Science
,
321
(
5895
), pp.
1457
1461
.10.1126/science.1158899
2.
Farzanehnia
,
A.
,
Khatibi
,
M.
,
Sardarabadi
,
M.
, and
Passandideh-Fard
,
M.
,
2019
, “
Experimental Investigation of Multiwall Carbon Nanotube/Paraffin Based Heat Sink for Electronic Device Thermal Management
,”
Energy Convers. Manage.
,
179
, pp.
314
325
.10.1016/j.enconman.2018.10.037
3.
Moore
,
A. L.
, and
Shi
,
L.
,
2014
, “
Emerging Challenges and Materials for Thermal Management of Electronics
,”
Mater. Today
,
17
(
4
), pp.
163
174
.10.1016/j.mattod.2014.04.003
4.
Wang
,
C.
,
Hua
,
L.
,
Yan
,
H.
,
Li
,
B.
,
Tu
,
Y.
, and
Wang
,
R.
,
2020
, “
A Thermal Management Strategy for Electronic Devices Based on Moisture Sorption-Desorption Processes
,”
Joule
,
4
(
2
), pp.
435
447
.10.1016/j.joule.2019.12.005
5.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2013
, “
Heat Transfer and Fluid Flow Analysis of Solar Air Heater: A Review of CFD Approach
,”
Renewable Sustainable Energy Rev.
,
23
, pp.
60
79
.10.1016/j.rser.2013.02.035
6.
Zhang
,
Q.
,
Huo
,
Y.
, and
Rao
,
Z.
,
2016
, “
Numerical Study on Solid–Liquid Phase Change in Paraffin as Phase Change Material for Battery Thermal Management
,”
Sci. Bull.
,
61
(
5
), pp.
391
400
.10.1007/s11434-016-1016-z
7.
Mei
,
X.
,
Xie
,
Y.
,
Chai
,
S.
,
Wu
,
X.
, and
Lu
,
L.
,
2023
, “
Analysis of Liquid Film Evaporation in Porous Particles: Toward Optimal Wick Parameters for Heat Transfer in Heat Pipes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
11
), p.
111003
.10.1115/1.4062857
8.
Dugast
,
F.
,
Apostolou
,
P.
,
Fernandez
,
A.
,
Dong
,
W.
,
Chen
,
Q.
,
Strayer
,
S.
,
Wicker
,
R.
, and
To
,
A. C.
,
2021
, “
Part-Scale Thermal Process Modeling for Laser Powder Bed Fusion With Matrix-Free Method and GPU Computing
,”
Addit. Manuf.
,
37
, p.
101732
.10.1016/j.addma.2020.101732
9.
Zandi
,
S.
,
Seresht
,
M. J.
,
Khan
,
A.
, and
Gorji
,
N. E.
,
2022
, “
Simulation of Heat Loss in Cu2ZnSn4SxSe4-x Thin Film Solar Cells: A Coupled Optical-Electrical-Thermal Modeling
,”
Renewable Energy
,
181
, pp.
320
328
.10.1016/j.renene.2021.09.035
10.
Shojaei
,
A.
,
2003
, “
Simulation of the Three-Dimensional Non-Isothermal Mold Filling Process in Resin Transfer Molding
,”
Compos. Sci. Technol.
,
63
(
13
), pp.
1931
1948
.10.1016/S0266-3538(03)00161-1
11.
Shojaei
,
A.
,
Ghaffarian
,
S. R.
, and
Karimian
,
S. M. H.
,
2002
, “
Numerical Simulation of Three-Dimensional Mold Filling Process in Resin Transfer Molding Using Quasi-Steady State and Partial Saturation Formulations
,”
Compos. Sci. Technol.
,
62
(
6
), pp.
861
879
.10.1016/S0266-3538(02)00020-9
12.
Cho
,
S.
,
Kim
,
M.
,
Lyu
,
B.
, and
Moon
,
I.
,
2021
, “
Optimization of an Explosive Waste Incinerator Via an Artificial Neural Network Surrogate Model
,”
Chem. Eng. J.
,
407
, p.
126659
.10.1016/j.cej.2020.126659
13.
Wang
,
B.
,
Xie
,
B.
,
Xuan
,
J.
, and
Jiao
,
K.
,
2020
, “
AI-Based Optimization of PEM Fuel Cell Catalyst Layers for Maximum Power Density Via Data-Driven Surrogate Modeling
,”
Energy Convers. Manage.
,
205
, p.
112460
.10.1016/j.enconman.2019.112460
14.
Navid
,
A.
,
Khalilarya
,
S.
, and
Taghavifar
,
H.
,
2016
, “
Comparing Multi-Objective Non-Evolutionary NLPQL and Evolutionary Genetic Algorithm Optimization of a DI Diesel Engine: DoE Estimation and Creating Surrogate Model
,”
Energy Convers. Manage.
,
126
, pp.
385
399
.10.1016/j.enconman.2016.08.014
15.
Park
,
D.
,
Cha
,
J.
,
Kim
,
M.
, and
Go
,
J. S.
,
2020
, “
Multi-Objective Optimization and Comparison of Surrogate Models for Separation Performances of Cyclone Separator Based on CFD, RSM, GMDH-Neural Network, Back Propagation-ANN and Genetic Algorithm
,”
Eng. Appl. Comput. Fluid Mech.
,
14
(
1
), pp.
180
201
.10.1080/19942060.2019.1691054
16.
Li
,
H.
,
Xu
,
B.
,
Lu
,
G.
,
Du
,
C.
, and
Huang
,
N.
,
2021
, “
Multi-Objective Optimization of PEM Fuel Cell by Coupled Significant Variables Recognition, Surrogate Models and a Multi-Objective Genetic Algorithm
,”
Energy Convers. Manage.
,
236
, p.
114063
.10.1016/j.enconman.2021.114063
17.
Yang
,
Z.
,
Yu
,
C.-H.
, and
Buehler
,
M. J.
,
2021
, “
Deep Learning Model to Predict Complex Stress and Strain Fields in Hierarchical Composites
,”
Sci. Adv.
,
7
(
15
), p.
eabd7416
.10.1126/sciadv.abd7416
18.
Yang
,
L.
,
Wang
,
Q.
, and
Rao
,
Y.
,
2021
, “
Searching for Irregular Pin-Fin Shapes for High Temperature Applications Using Deep Learning Methods
,”
Int. J. Therm. Sci.
,
161
, p.
106746
.10.1016/j.ijthermalsci.2020.106746
19.
Wang
,
Y.
,
Zhou
,
J.
,
Ren
,
Q.
,
Li
,
Y.
, and
Su
,
D.
,
2021
, “
3-D Steady Heat Conduction Solver Via Deep Learning
,”
IEEE J. Multiscale Multiphys. Comput. Tech.
,
6
, pp.
100
108
.10.1109/JMMCT.2021.3106539
20.
Yang
,
Z.
, and
Buehler
,
M. J.
,
2022
, “
Linking Atomic Structural Defects to Mesoscale Properties in Crystalline Solids Using Graph Neural Networks
,”
npj Comput. Mater.
,
8
(
1
), p.
198
.10.1038/s41524-022-00879-4
21.
Chen
,
X.
,
Chen
,
X.
,
Zhou
,
W.
,
Zhang
,
J.
, and
Yao
,
W.
,
2020
, “
The Heat Source Layout Optimization Using Deep Learning Surrogate Modeling
,”
Struct. Multidiscip. Optim.
,
62
(
6
), pp.
3127
3148
.10.1007/s00158-020-02659-4
22.
Zhao
,
X.
,
Gong
,
Z.
,
Zhang
,
J.
,
Yao
,
W.
, and
Chen
,
X.
,
2021
, “
A Surrogate Model With Data Augmentation and Deep Transfer Learning for Temperature Field Prediction of Heat Source Layout
,”
Struct. Multidiscip. Optim.
,
64
(
4
), pp.
2287
2306
.10.1007/s00158-021-02983-3
23.
Chen
,
J.
,
Zhu
,
F.
,
Han
,
Y.
, and
Chen
,
C.
,
2021
, “
Fast Prediction of Complicated Temperature Field Using Conditional Multi-Attention Generative Adversarial Networks (CMAGAN)
,”
Expert Syst. Appl.
,
186
, p.
115727
.10.1016/j.eswa.2021.115727
24.
Kang
,
M.
,
Phuong Nguyen
,
N.
, and
Kwon
,
B.
,
2024
, “
Deep Learning Model for Rapid Temperature Map Prediction in Transient Convection Process Using Conditional Generative Adversarial Networks
,”
Therm. Sci. Eng. Prog.
,
49
, p.
102477
.10.1016/j.tsep.2024.102477
25.
Edalatifar
,
M.
,
Tavakoli
,
M. B.
,
Ghalambaz
,
M.
, and
Setoudeh
,
F.
,
2021
, “
Using Deep Learning to Learn Physics of Conduction Heat Transfer
,”
J. Therm. Anal. Calorim.
,
146
(
3
), pp.
1435
1452
.10.1007/s10973-020-09875-6
26.
Paszke
,
A.
, Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., et al.,
2019
, “
PyTorch: An Imperative Style, High-Performance Deep Learning Library
,”
Adv. Neural Inf. Process. Syst.
,
32
, pp.
8026
8037
.10.5555/3454287.3455008
27.
Shaham
,
T. R.
,
Gharbi
,
M.
,
Zhang
,
R.
,
Shechtman
,
E.
, and
Michaeli
,
T.
,
2021
, “
Spatially-Adaptive Pixelwise Networks for Fast Image Translation
,”
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(
CVPR
), Nashville, TN, June 20–25, pp.
14877
14886
.10.1109/CVPR46437.2021.01464
28.
Isola
,
P.
,
Zhu
,
J.-Y.
,
Zhou
,
T.
, and
Efros
,
A. A.
,
2017
, “
Image-to-Image Translation With Conditional Adversarial Networks
,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (
CVPR
), Honolulu, HI, July 21–26, pp.
5967
5976
.10.1109/CVPR.2017.632
29.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “
U-Net: Convolutional Networks for Biomedical Image Segmentation
,” Medical Image Computing and Computer-Assisted Intervention—
MICCAI 2015
: 18th International Conference,, Munich, Germany, Oct. 5–9,
pp.
234
241
.10.1007/978-3-319-24574-4_28
30.
Wang
,
Z.
,
Bovik
,
A. C.
,
Sheikh
,
H. R.
, and
Simoncelli
,
E. P.
,
2004
, “
Image Quality Assessment: From Error Visibility to Structural Similarity
,”
IEEE Trans. Image Process.
,
13
(
4
), pp.
600
612
.10.1109/TIP.2003.819861
31.
Shields
,
M. D.
, and
Zhang
,
J.
,
2016
, “
The Generalization of Latin Hypercube Sampling
,”
Reliab. Eng. Syst. Saf.
,
148
, pp.
96
108
.10.1016/j.ress.2015.12.002
32.
Ke
,
S.
, and
Liu
,
W.
,
2022
, “
Consistency of Multiagent Distributed Generative Adversarial Networks
,”
IEEE Trans. Cybern.
,
52
(
6
), pp.
4886
4896
.10.1109/TCYB.2020.3022695
33.
Pakrouh
,
R.
,
Hosseini
,
M. J.
,
Ranjbar
,
A. A.
, and
Bahrampoury
,
R.
,
2015
, “
A Numerical Method for PCM-Based Pin Fin Heat Sinks Optimization
,”
Energy Convers. Manage.
,
103
, pp.
542
552
.10.1016/j.enconman.2015.07.003
34.
Nilpueng
,
K.
,
Kaseethong
,
P.
,
Mesgarpour
,
M.
,
Shadloo
,
M. S.
, and
Wongwises
,
S.
,
2022
, “
A Novel Temperature Prediction Method Without Using Energy Equation Based on Physics-Informed Neural Network (PINN): A Case Study on Plate-Circular/Square Pin-Fin Heat Sinks
,”
Eng. Anal. Boundary Elem.
,
145
, pp.
404
417
.10.1016/j.enganabound.2022.09.032
35.
Zhuang
,
F.
,
Qi
,
Z.
,
Duan
,
K.
,
Xi
,
D.
,
Zhu
,
Y.
,
Zhu
,
H.
,
Xiong
,
H.
, and
He
,
Q.
,
2021
, “
A Comprehensive Survey on Transfer Learning
,”
Proc. IEEE
,
109
(
1
), pp.
43
76
.10.1109/JPROC.2020.3004555
36.
Vučina
,
D.
,
Marinić-Kragić
,
I.
, and
Milas
,
Z.
,
2016
, “
Numerical Models for Robust Shape Optimization of Wind Turbine Blades
,”
Renewable Energy
,
87
, pp.
849
862
.10.1016/j.renene.2015.10.040
37.
Hu
,
G.
,
Li
,
M.
,
Wang
,
X.
,
Wei
,
G.
, and
Chang
,
C.-T.
,
2022
, “
An Enhanced Manta Ray Foraging Optimization Algorithm for Shape Optimization of Complex CCG-Ball Curves
,”
Knowl.-Based Syst.
,
240
, p.
108071
.10.1016/j.knosys.2021.108071
38.
Rao
,
Y.
,
He
,
D.
, and
Qu
,
L.
,
2022
, “
A Probabilistic Simplified Sine Cosine Crow Search Algorithm for Global Optimization Problems
,”
Eng. Comput.
,
39
(
3
), pp.
1823
1841
.10.1007/s00366-021-01578-2
You do not currently have access to this content.