Abstract

The near-field radiative heat transfer of heterostructure consisting of SiC gratings and graphene is investigated in this work. The rigorous coupled-wave analysis is employed to calculate the spectral heat flux. Nevertheless, monolayer heterostructure and nonmisaligned bilayer heterostructure consistently suffer from a lack of spectral heat flux. In this work, we investigate the prominent effect of misaligned bilayer heterostructure in enhancing near-field radiative heat transfer by plotting energy transmission coefficients and electromagnetic fields. The results show that when the misalignment reaches half a period, the bilayer heterostructure exhibits optimal performance with a total heat flux of 3.5 × 104 W/m2. Besides the well-known coupled surface phonon polaritons supported by SiC gratings, the surface plasmon polaritons supported by graphene dominate the enhancement of heat flux from 0.01 × 1014 rad/s to 1.5 × 1014 rad/s. Due to the spatial misalignment of the upper and lower gratings, the lower layer graphene surface plasmon polaritons are intensified, compensating for the lack of spectral heat flux. Meanwhile, the graphene surface plasmon polaritons and SiC surface phonon polaritons can be hybridized to form surface plasmon-phonon polaritons. In addition, the dynamic modulation of near-field radiative heat transfer in the misalignment state is achieved by manipulating the Fermi level of graphene. We finally show that the superiority of misaligned heterostructure is robust with respect to the frequency shift in the phonon band, providing an effective way to improve the near-field radiative heat transfer in different configuration.

References

1.
Polder
,
D.
, and
Van Hove
,
M.
,
1971
, “
Theory of Radiative Heat Transfer Between Closely Spaced Bodies
,”
Phys. Rev. B
,
4
(
10
), pp.
3303
3314
.10.1103/PhysRevB.4.3303
2.
Volokitin
,
A. I.
, and
Persson
,
B. N. J.
,
2007
, “
Near-Field Radiative Heat Transfer and Noncontact Friction
,”
Rev. Mod. Phys.
,
79
(
4
), pp.
1291
1329
.10.1103/RevModPhys.79.1291
3.
Kralik
,
T.
,
Hanzelka
,
P.
,
Zobac
,
M.
,
Musilova
,
V.
,
Fort
,
T.
, and
Horak
,
M.
,
2012
, “
Strong Near-Field Enhancement of Radiative Heat Transfer Between Metallic Surfaces
,”
Phys. Rev. Lett.
,
109
(
22
), p.
224302
.10.1103/PhysRevLett.109.224302
4.
St-Gelais
,
R.
,
Guha
,
B.
,
Zhu
,
L.
,
Fan
,
S.
, and
Lipson
,
M.
,
2014
, “
Demonstration of Strong Near-Field Radiative Heat Transfer Between Integrated Nanostructures
,”
Nano Lett.
,
14
(
12
), pp.
6971
6975
.10.1021/nl503236k
5.
Lim
,
M.
,
Lee
,
S. S.
, and
Lee
,
B. J.
,
2017
, “
Effects of Multilayered Graphene on the Performance of Near-Field Thermophotovoltaic System at Longer Vacuum Gap Distances
,”
J. Quant. Spectrosc. Radiat. Transfer
,
197
, pp.
84
94
.10.1016/j.jqsrt.2017.03.011
6.
Watjen
,
J. I.
,
Liu
,
X. L.
,
Zhao
,
B.
, and
Zhang
,
Z. M.
,
2017
, “
A Computational Simulation of Using Tungsten Gratings in Near-Field Thermophotovoltaic Devices
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
5
), p.
052704
.10.1115/1.4035356
7.
Otey
,
C. R.
,
Lau
,
W. T.
, and
Fan
,
S.
,
2010
, “
Thermal Rectification Through Vacuum
,”
Phys. Rev. Lett.
,
104
(
15
), p.
154301
.10.1103/PhysRevLett.104.154301
8.
Zheng
,
Z.
,
Liu
,
X.
,
Wang
,
A.
, and
Xuan
,
Y.
,
2017
, “
Graphene-Assisted Near-Field Radiative Thermal Rectifier Based on Phase Transition of Vanadium Dioxide (VO2)
,”
Int. J. Heat Mass Transfer
,
109
, pp.
63
72
.10.1016/j.ijheatmasstransfer.2017.01.107
9.
Kubytskyi
,
V.
,
Biehs
,
S. A.
, and
Ben-Abdallah
,
P.
,
2014
, “
Radiative Bistability and Thermal Memory
,”
Phys. Rev. Lett.
,
113
(
7
), p.
074301
.10.1103/PhysRevLett.113.074301
10.
Jones
,
A. C.
,
O'Callahan
,
B. T.
,
Yang
,
H. U.
, and
Raschke
,
M. B.
,
2013
, “
The Thermal Near-Field: Coherence, Spectroscopy, Heat-Transfer, and Optical Forces
,”
Prog. Surf. Sci.
,
88
(
4
), pp.
349
392
.10.1016/j.progsurf.2013.07.001
11.
Rousseau
,
E.
,
Laroche
,
M.
, and
Greffet
,
J.-J.
,
2009
, “
Radiative Heat Transfer at Nanoscale Mediated by Surface Plasmons for Highly Doped Silicon
,”
Appl. Phys. Lett.
,
95
(
23
), p.
231913
.10.1063/1.3271681
12.
Wang
,
L. P.
, and
Zhang
,
Z. M.
,
2009
, “
Resonance Transmission or Absorption in Deep Gratings Explained by Magnetic Polaritons
,”
Appl. Phys. Lett.
,
95
(
11
), p.
111904
.10.1063/1.3226661
13.
Francoeur
,
M.
,
Mengüç
,
M. P.
, and
Vaillon
,
R.
,
2010
, “
Spectral Tuning of Near-Field Radiative Heat Flux Between Two Thin Silicon Carbide Films
,”
J. Phys. D: Appl. Phys.
,
43
(
7
), p.
075501
.10.1088/0022-3727/43/7/075501
14.
Dyakov
,
S. A.
,
Dai
,
J.
,
Yan
,
M.
, and
Qiu
,
M.
,
2014
, “
Thermal Radiation Dynamics in Two Parallel Plates: The Role of Near Field
,”
Phys. Rev. B
,
90
(
4
), p.
045414
.10.1103/PhysRevB.90.045414
15.
Xu
,
G.
,
Sun
,
J.
,
Mao
,
H.
, and
Pan
,
T.
,
2020
, “
Near-Field Radiative Thermal Rectification Assisted by Black Phosphorus Sheets
,”
Int. J. Therm. Sci.
,
149
, p.
106179
.10.1016/j.ijthermalsci.2019.106179
16.
Chapuis
,
P.-O.
,
Volz
,
S.
,
Henkel
,
C.
,
Joulain
,
K.
, and
Greffet
,
J.-J.
,
2008
, “
Effects of Spatial Dispersion in Near-Field Radiative Heat Transfer Between Two Parallel Metallic Surfaces
,”
Phys. Rev. B
,
77
(
3
), p.
035431
.10.1103/PhysRevB.77.035431
17.
Guérout
,
R.
,
Lussange
,
J.
,
Rosa
,
F. S. S.
,
Hugonin
,
J.-P.
,
Dalvit
,
D. A. R.
,
Greffet
,
J.-J.
,
Lambrecht
,
A.
, and
Reynaud
,
S.
,
2012
, “
Enhanced Radiative Heat Transfer Between Nanostructured Gold Plates
,”
Phys. Rev. B
,
85
(
18
), p.
180301
.10.1103/PhysRevB.85.180301
18.
Zhao
,
B.
,
Guizal
,
B.
,
Zhang
,
Z. M.
,
Fan
,
S.
, and
Antezza
,
M.
,
2017
, “
Near-Field Heat Transfer Between Graphene/hBN Multilayers
,”
Phys. Rev. B
,
95
(
24
), p.
245437
.10.1103/PhysRevB.95.245437
19.
Wu
,
X.
,
Fu
,
C.
, and
Zhang
,
Z. M.
,
2020
, “
Near-Field Radiative Heat Transfer Between Two α-MoO3 Biaxial Crystals
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
7
), p.
072802
.10.1115/1.4046968
20.
Dai
,
J.
,
Ding
,
F.
,
Bozhevolnyi
,
S. I.
, and
Yan
,
M.
,
2017
, “
Ultrabroadband super-Planckian Radiative Heat Transfer With Artificial Continuum Cavity States in Patterned Hyperbolic Metamaterials
,”
Phys. Rev. B
,
95
(
24
), p.
245405
.10.1103/PhysRevB.95.245405
21.
Biehs
,
S.-A.
,
Tschikin
,
M.
, and
Ben-Abdallah
,
P.
,
2012
, “
Hyperbolic Metamaterials as an Analog of a Blackbody in the Near Field
,”
Phys. Rev. Lett.
,
109
(
10
), p.
104301
.10.1103/PhysRevLett.109.104301
22.
Biehs
,
S.-A.
,
Ben-Abdallah
,
P.
,
Rosa
,
F. S. S.
,
Joulain
,
K.
, and
Greffet
,
J.-J.
,
2011
, “
Nanoscale Heat Flux Between Nanoporous Materials
,”
Opt. Express
,
19
(
S5
), p.
A1088
.10.1364/OE.19.0A1088
23.
Biehs
,
S.-A.
,
Rosa
,
F. S. S.
, and
Ben-Abdallah
,
P.
,
2011
, “
Modulation of Near-Field Heat Transfer Between Two Gratings
,”
Appl. Phys. Lett.
,
98
(
24
), p.
243102
.10.1063/1.3596707
24.
Yang
,
Y.
, and
Wang
,
L.
,
2016
, “
Spectrally Enhancing Near-Field Radiative Transfer Between Metallic Gratings by Exciting Magnetic Polaritons in Nanometric Vacuum Gaps
,”
Phys. Rev. Lett.
,
117
(
4
), p.
044301
.10.1103/PhysRevLett.117.044301
25.
Liu
,
X.
,
Zhang
,
R. Z.
, and
Zhang
,
Z.
,
2014
, “
Near-Perfect Photon Tunneling by Hybridizing Graphene Plasmons and Hyperbolic Modes
,”
ACS Photonics
,
1
(
9
), pp.
785
789
.10.1021/ph5001633
26.
Basu
,
S.
,
Yang
,
Y.
, and
Wang
,
L.
,
2015
, “
Near-Field Radiative Heat Transfer Between Metamaterials Coated With Silicon Carbide Thin Films
,”
Appl. Phys. Lett.
,
106
(
3
), p.
033106
.10.1063/1.4906530
27.
Zheng
,
Z.
,
Wang
,
A.
, and
Xuan
,
Y.
,
2018
, “
Spectral Tuning of Near-Field Radiative Heat Transfer by Graphene-Covered Metasurfaces
,”
J. Quant. Spectrosc. Radiat. Transfer
,
208
, pp.
86
95
.10.1016/j.jqsrt.2018.01.009
28.
Zhao
,
Q.
,
Zhou
,
T.
,
Wang
,
T.
,
Liu
,
W.
,
Liu
,
J.
,
Yu
,
T.
,
Liao
,
Q.
, and
Liu
,
N.
,
2017
, “
Active Control of Near-Field Radiative Heat Transfer Between Graphene-Covered Metamaterials
,”
J. Phys. D: Appl. Phys.
,
50
(
14
), p.
145101
.10.1088/1361-6463/aa616e
29.
Liu
,
X. L.
, and
Zhang
,
Z. M.
,
2014
, “
Graphene-Assisted Near-Field Radiative Heat Transfer Between Corrugated Polar Materials
,”
Appl. Phys. Lett.
,
104
(
25
), p.
251911
.10.1063/1.4885396
30.
Shi
,
K. Z.
,
Bao
,
F. L.
,
He
,
N.
, and
He
,
S. L.
,
2019
, “
Near-Field Heat Transfer Between graphene-Si Grating Heterostructures With Multiple Magnetic-Polaritons Coupling
,”
Int. J. Heat Mass Transfer
,
134
, pp.
1119
1126
.10.1016/j.ijheatmasstransfer.2019.01.037
31.
Messina
,
R.
, and
Ben-Abdallah
,
P.
,
2013
, “
Graphene-Based Photovoltaic Cells for Near-Field Thermal Energy Conversion
,”
Sci. Rep.
,
3
(
1
), p.
1383
.10.1038/srep01383
32.
Messina
,
R.
,
Ben-Abdallah
,
P.
,
Guizal
,
B.
, and
Antezza
,
M.
,
2017
, “
Graphene-Based Amplification and Tuning of Near-Field Radiative Heat Transfer Between Dissimilar Polar Materials
,”
Phys. Rev. B
,
96
(
4
), p.
045402
.10.1103/PhysRevB.96.045402
33.
Yang
,
Y.
,
Sabbaghi
,
P.
, and
Wang
,
L.
,
2017
, “
Effect of Magnetic Polaritons in SiC Deep Gratings on Near-Field Radiative Transfer
,”
Int. J. Heat Mass Transfer
,
108
, pp.
851
859
.10.1016/j.ijheatmasstransfer.2016.12.061
34.
Heavens
,
O. S.
,
1992
, “
Handbook of Optical Constants of Solids II
,”
J. Mod. Opt.
,
39
(
1
), pp.
189
189
.10.1080/716099804a
35.
Wang
,
A.
,
Zheng
,
Z.
, and
Xuan
,
Y.
,
2016
, “
Near-Field Radiative Thermal Control With Graphene Covered on Different Materials
,”
J. Quant. Spectrosc. Radiat. Transfer
,
180
, pp.
117
125
.10.1016/j.jqsrt.2016.04.018
36.
Liu
,
X. L.
,
Zhao
,
B.
, and
Zhang
,
Z. M.
,
2015
, “
Blocking-Assisted Infrared Transmission of Subwavelength Metallic Gratings by Graphene
,”
J. Opt.
,
17
(
3
), p.
035004
.10.1088/2040-8978/17/3/035004
37.
Zare
,
S.
,
Zeinali Tajani
,
B.
, and
Edalatpour
,
S.
,
2022
, “
Effect of Nonlocal Electrical Conductivity on Near-Field Radiative Heat Transfer Between Graphene Sheets
,”
Phys. Rev. B
,
105
(
12
), p.
125416
.10.1103/PhysRevB.105.125416
38.
Falkovsky
,
L. A.
,
2008
, “
Optical Properties of Graphene
,”
J. Phys.: Conf. Ser.
,
129
, p.
012004
.10.1088/1742-6596/129/1/012004
39.
Lussange
,
J.
,
Guérout
,
R.
,
Rosa
,
F. S. S.
,
Greffet
,
J.-J.
,
Lambrecht
,
A.
, and
Reynaud
,
S.
,
2012
, “
Radiative heat transfer between two dielectric nanogratings in the scattering approach
,”
Phys. Rev. B
,
86
(
8
), p.
085432
.10.1103/physrevb.86.085432
40.
Bimonte
,
G.
,
2009
, “
Scattering Approach to Casimir Forces and Radiative Heat Transfer for Nanostructured Surfaces Out of Thermal Equilibrium
,”
Phys. Rev. A
,
80
(
4
), p.
042102
.10.1103/PhysRevA.80.042102
41.
Messina
,
R.
, and
Antezza
,
M.
,
2011
, “
Scattering-Matrix Approach to Casimir-Lifshitz Force and Heat Transfer Out of Thermal Equilibrium Between Arbitrary Bodies
,”
Phys. Rev. A
,
84
(
4
), p.
042102
.10.1103/PhysRevA.84.042102
42.
Lussange
,
J.
,
Guérout
,
R.
,
Rosa
,
F. S. S.
,
Greffet
,
J.-J.
,
Lambrecht
,
A.
, and
Reynaud
,
S.
,
2012
, “
Radiative Heat Transfer Between Two Dielectric Nanogratings in the Scattering Approach
,”
Phys. Rev. B
,
86
(
8
), p.
085432
.10.1103/PhysRevB.86.085432
43.
Liu
,
X.
,
Zhao
,
B.
, and
Zhang
,
Z. M.
,
2015
, “
Enhanced Near-Field Thermal Radiation and Reduced Casimir Stiction Between doped-Si Gratings
,”
Phys. Rev. A
,
91
(
6
), p.
062510
.10.1103/PhysRevA.91.062510
44.
Fernández-Hurtado
,
V.
,
García-Vidal
,
F. J.
,
Fan
,
S.
, and
Cuevas
,
J. C.
,
2017
, “
Enhancing Near-Field Radiative Heat Transfer With Si-Based Metasurfaces
,”
Phys. Rev. Lett.
,
118
(
20
), p.
203901
.10.1103/PhysRevLett.118.203901
45.
Messina
,
R.
,
Noto
,
A.
,
Guizal
,
B.
, and
Antezza
,
M.
,
2017
, “
Radiative Heat Transfer Between Metallic Gratings Using Fourier Modal Method With Adaptive Spatial Resolution
,”
Phys. Rev. B
,
95
(
12
), p.
125404
.10.1103/PhysRevB.95.125404
46.
Moharam
,
M. G.
,
Gaylord
,
T. K.
,
Grann
,
E. B.
, and
Pommet
,
D. A.
,
1995
, “
Formulation for Stable and Efficient Implementation of the Rigorous Coupled-Wave Analysis of Binary Gratings
,”
J. Opt. Soc. Am. A
,
12
(
5
), p.
1068
.10.1364/JOSAA.12.001068
47.
Noto
,
A.
,
Messina
,
R.
,
Guizal
,
B.
, and
Antezza
,
M.
,
2014
, “
Casimir-Lifshitz Force Out of Thermal Equilibrium Between Dielectric Gratings
,”
Phys. Rev. A
,
90
(
2
), p.
022120
.10.1103/PhysRevA.90.022120
48.
Didari
,
A.
, and
Mengüç
,
M. P.
,
2015
, “
Near-Field Thermal Radiation Transfer by Mesoporous Metamaterials
,”
Opt. Express
,
23
(
19
), p.
A1253
.10.1364/OE.23.0A1253
49.
Zhang
,
Y.
,
Wang
,
C.-H.
,
Yi
,
H.-L.
, and
Tan
,
H.-P.
,
2018
, “
Multiple Surface Plasmon Polaritons Mediated Near-Field Radiative Heat Transfer Between Graphene/Vacuum Multilayers
,”
J. Quant. Spectrosc. Radiat. Transfer
,
221
, pp.
138
146
.10.1016/j.jqsrt.2018.09.029
50.
Liu
,
X. L.
,
Zhang
,
R. Z.
, and
Zhang
,
Z. M.
,
2014
, “
Near-Field Radiative Heat Transfer With Doped-Silicon Nanostructured Metamaterials
,”
Int. J. Heat Mass Transfer
,
73
, pp.
389
398
.10.1016/j.ijheatmasstransfer.2014.02.021
You do not currently have access to this content.