Abstract

The manifold microchannel heat sink (MMCHS) shows high potential to cope with the rapidly increasing power density of electronic devices. It is of significance to search for an optimization method to comprehensively consider multiparameter effects on the performance of microchannel. Here, we have studied the temperature and flow characteristics of the MMCHS via experimental method. Then, the effect of geometric parameters including microchannel aspect ratio (α), hydraulic diameter (Dh), and manifold block numbers (Nm) on the performance of a MMCHS were studied by numerical method. Subsequently, the design of experiment (DOE) method was proposed to optimize the geometric parameters of the MMCHS. The relation of friction coefficient and heat transfer coefficient with respect to the three geometric parameters was gained by the mathematical regression model. The statistically optimized manifold microchannel achieved a 10.0% reduction in temperature rise, 59.9% enhanced in the heat transfer coefficient, and the figure of merit (FOM) of 1.6. Our work shows a novel method to consider the effect of structure parameters on the performance of the manifold microchannel and provides a novel optimization design method for the manifold microchannel.

References

1.
Kim
,
S.-M.
, and
Mudawar
,
I.
,
2014
, “
Review of Databases and Predictive Methods for Pressure Drop in Adiabatic, Condensing and Boiling Mini/Micro-Channel Flows
,”
Int. J. Heat Mass Transfer
,
77
, pp.
74
97
.10.1016/j.ijheatmasstransfer.2014.04.035
2.
Mudawar
,
I.
,
2011
, “
Two-Phase Microchannel Heat Sinks: Theory, Applications, and Limitations
,”
ASME J. Electron. Packag.
,
133
(
4
) p.
041002
.10.1115/1.4005300
3.
Kim
,
S.-M.
, and
Nudawar
,
I.
,
2016
, “
Thermal Design and Operational Limits of Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer.
, 106, pp.
861
876
.10.1016/j.ijheatmasstransfer.2016.10.020
4.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
5.
Kim
,
B.
,
2016
, “
An Experimental Study on Fully Developed Laminar Flow and Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Fluid Flow
,
62
, pp.
224
232
.10.1016/j.ijheatfluidflow.2016.10.007
6.
Wang
,
H.
,
2016
, “
Influence of Geometric Parameters on Flow and Heat Transfer Performance of Micro-Channel Heat Sinks
,”
Appl. Therm. Eng.
, 107, pp. 870–879.10.1016/j.applthermaleng.2016.07.039
7.
Sahar
,
A. M.
,
Wissink
,
J.
,
Mahmoud
,
M. M.
,
Karayiannis
,
T. G.
, and
Ashrul Ishak
,
M. S.
,
2017
, “
Effect of Hydraulic Diameter and Aspect Ratio on Single Phase Flow and Heat Transfer in a Rectangular Microchannel
,”
Appl. Therm. Eng.
,
115
, pp.
793
814
.10.1016/j.applthermaleng.2017.01.018
8.
Yu
,
H.
,
Zhuang
,
J.
,
Li
,
T.
,
Li
,
W.
,
He
,
T.
, and
Mao
,
N.
,
2022
, “
Influence of Transient Heat Flux on Boiling Flow Pattern in a Straight Microchannel Applied in Concentrator Photovoltaic Systems
,”
Int. J. Heat Mass Transfer
,
190
, p.
122792
.10.1016/j.ijheatmasstransfer.2022.122792
9.
Vajravelu
,
K.
, and
Sastri
,
K. S.
,
1980
, “
Natural Convective Heat Transfer in Vertical Wavy Channels
,”
Int. J. Heat Mass Transfer
,
23
(
3
), pp.
408
411
.10.1016/0017-9310(80)90130-1
10.
Gong
,
L.
,
Kota
,
K.
,
Tao
,
W.
, and
Joshi
,
Y.
,
2010
, “
Parametric Numerical Study of Flow and Heat Transfer in Microchannels With Wavy Walls
,”
ASME J. Heat Mass Transfer-Trans. ASME
, 133(5), p.
051702
.10.1115/1.4003284
11.
Hong
,
F. J.
,
Cheng
,
P.
,
Ge
,
H.
, and
Joo
,
G. T.
,
2007
, “
Conjugate Heat Transfer in Fractal-Shaped Microchannel Network Heat Sink for Integrated Microelectronic Cooling Application
,”
Int. J. Heat Mass Transfer
,
50
(
25–26
), pp.
4986
4998
.10.1016/j.ijheatmasstransfer.2007.09.006
12.
Al-Neama
,
A. F.
,
Kapur
,
N.
,
Summers
,
J.
, and
Thompson
,
H. M.
,
2017
, “
An Experimental and Numerical Investigation of the Use of Liquid Flow in Serpentine Microchannels for Microelectronics Cooling
,”
Appl. Therm. Eng.
,
116
, pp.
709
723
.10.1016/j.applthermaleng.2017.02.001
13.
Al-Neama
,
A. F.
,
Khatir
,
Z.
,
Kapur
,
N.
,
Summers
,
J.
, and
Thompson
,
H. M.
,
2018
, “
An Experimental and Numerical Investigation of Chevron Fin Structures in Serpentine Minichannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
120
, pp.
1213
1228
.10.1016/j.ijheatmasstransfer.2017.12.092
14.
Pan
,
M.
,
Wang
,
H.
,
Zhong
,
Y.
,
Fang
,
T.
, and
Zhong
,
X.
,
2019
, “
Numerical Simulation of the Fluid Flow and Heat Transfer Characteristics of Microchannel Heat Exchangers With Different Reentrant Cavities
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
11
), pp.
4334
4348
.10.1108/HFF-03-2019-0252
15.
Pan
,
M.
,
Wang
,
H.
,
Zhong
,
Y.
,
Hu
,
M.
,
Zhou
,
X.
,
Dong
,
G.
, and
Huang
,
P.
,
2019
, “
Experimental Investigation of the Heat Transfer Performance of Microchannel Heat Exchangers With Fan-Shaped Cavities
,”
Int. J. Heat Mass Transfer
,
134
, pp.
1199
1208
.10.1016/j.ijheatmasstransfer.2019.01.140
16.
Toghraie
,
D.
,
Abdollah
,
M. M. D.
,
Pourfattah
,
F.
,
Akbari
,
O. A.
, and
Ruhani
,
B.
,
2018
, “
Numerical Investigation of Flow and Heat Transfer Characteristics in Smooth, Sinusoidal and Zigzag-Shaped Microchannel With and Without Nanofluid
,”
J. Therm. Anal. Calorim.
,
131
(
2
), pp.
1757
1766
.10.1007/s10973-017-6624-6
17.
Chai
,
L.
, and
Wang
,
L.
,
2018
, “
Thermal-Hydraulic Performance of Interrupted Microchannel Heat Sinks With Different Rib Geometries in Transverse Microchambers
,”
Int. J. Therm. Sci.
,
127
, pp.
201
212
.10.1016/j.ijthermalsci.2018.01.029
18.
Yang
,
D.
,
Wang
,
Y.
,
Ding
,
G.
,
Jin
,
Z.
,
Zhao
,
J.
, and
Wang
,
G.
,
2017
, “
Numerical and Experimental Analysis of Cooling Performance of Single-Phase Array Microchannel Heat Sinks With Different Pin-Fin Configurations
,”
Appl. Therm. Eng.
,
112
, pp.
1547
1556
.10.1016/j.applthermaleng.2016.08.211
19.
Xu
,
F.
, and
Wu
,
H.
,
2018
, “
Experimental Study of Water Flow and Heat Transfer in Silicon Micro-Pin-Fin Heat Sinks
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
12
), p.
122401
.10.1115/1.4040956
20.
Chiu
,
H.-C.
,
Jang
,
J.-H.
,
Yeh
,
H.-W.
, and
Wu
,
M.-S.
,
2011
, “
The Heat Transfer Characteristics of Liquid Cooling Heatsink Containing Microchannels
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
34
42
.10.1016/j.ijheatmasstransfer.2010.09.066
21.
Zhang
,
Y.-D.
,
Chen
,
M.-R.
,
Wu
,
J.-H.
,
Hung
,
K.-S.
, and
Wang
,
C.-C.
,
2021
, “
Performance Improvement of a Double-Layer Microchannel Heat Sink Via Novel Fin Geometry—a Numerical Study
,”
Energies
,
14
(
12
), p.
3585
.10.3390/en14123585
22.
Harpole
,
G. M.
, and
Eninger
,
J. E.
,
1991
, “
Micro-Channel Heat Exchanger Optimization
,”
Seventh IEEE Semiconductor Thermal Measurement and Management Symposium
, Phoenix, AZ, Feb. 12–14, pp.
59
63
.10.1109/STHERM.1991.152913
23.
Brunschwiler
,
T.
,
Rothuizen
,
H.
,
Fabbri
,
M.
,
Kloter
,
U.
,
Michel
,
B.
,
Bezama
,
R. J.
, and
Natarajan
,
G.
,
2006
, “
Direct Liquid Jet-Impingment Cooling With Micron-Sized Nozzle Array and Distributed Return Architecture
,”
Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, ITHERM 2006
,
San Diego, CA, May 30–June 2, pp.
196
203
.10.1109/ITHERM.2006.1645343
24.
Sharma
,
C. S.
,
Tiwari
,
M. K.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2013
, “
Thermofluidics and Energetics of a Manifold Microchannel Heat Sink for Electronics With Recovered Hot Water as Working Fluid
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
135
151
.10.1016/j.ijheatmasstransfer.2012.11.012
25.
Sarangi
,
S.
,
Bodla
,
K. K.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2014
, “
Manifold Microchannel Heat Sink Design Using Optimization Under Uncertainty
,”
Int. J. Heat Mass Transfer
,
69
, pp.
92
105
.10.1016/j.ijheatmasstransfer.2013.09.067
26.
Andhare
,
R. S.
,
Shooshtari
,
A.
,
Dessiatoun
,
S. V.
, and
Ohadi
,
M. M.
,
2016
, “
Heat Transfer and Pressure Drop Characteristics of a Flat Plate Manifold Microchannel Heat Exchanger in Counter Flow Configuration
,”
Appl. Therm. Eng.
,
96
, pp.
178
189
.10.1016/j.applthermaleng.2015.10.133
27.
Ryu
,
J. H.
,
Choi
,
D. H.
, and
Kim
,
S. J.
,
2003
, “
Three-Dimensional Numerical Optimization of a Manifold Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
46
(
9
), pp.
1553
1562
.10.1016/S0017-9310(02)00443-X
28.
Boteler
,
L.
,
Jankowski
,
N.
,
McCluskey
,
P.
, and
Morgan
,
B.
,
2012
, “
Numerical Investigation and Sensitivity Analysis of Manifold Microchannel Coolers
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7698
7708
.10.1016/j.ijheatmasstransfer.2012.07.073
29.
Li
,
Y.
,
Xia
,
G.
,
Jia
,
Y.
,
Cheng
,
Y.
, and
Wang
,
J.
,
2017
, “
Experimental Investigation of Flow Boiling Performance in Microchannels With and Without Triangular Cavities – a Comparative Study
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1511
1526
.10.1016/j.ijheatmasstransfer.2017.01.011
30.
Hadibafekr
,
S.
,
Mirzaee
,
I.
,
Khalilian
,
M.
, and
Shirvani
,
H.
,
2023
, “
Thermo-Entropic Analysis and Multi-Objective Optimization of Wavy Lobed Heat Exchanger Tube Using DOE, RSM, and NSGA II Algorithm
,”
Int. J. Therm. Sci.
,
184
, p.
107921
.10.1016/j.ijthermalsci.2022.107921
31.
Hajmohammadi
,
M. R.
,
Bahrami
,
M.
, and
Ahmadian-Elmi
,
M.
,
2021
, “
Thermal Performance Improvement of Microchannel Heat Sinks by Utilizing Variable Cross-Section Microchannels Filled With Porous Media
,”
Int. Commun. Heat Mass Transfer
,
126
, p.
105360
.10.1016/j.icheatmasstransfer.2021.105360
You do not currently have access to this content.