Abstract

Phase change heat storage offers a practical solution to address the instability and intermittency of solar energy. However, the thermal conductivity of heat storage medium (phase change material) is low, which hinders its large-scale application. Metal foam and fins have proven effective in enhancing heat transfer performance. This study establishes a visual phase change heat storage experimental platform to compare the heat storage and release performances of four different structures: pure paraffin, fins, metal foam, and fin-metal foam, throughout the complete melting-solidification cycle. Experimental snapshots and real-time data acquisition are utilized to obtain phase interface changes and internal temperature variations at different time intervals, enabling a quantitative comparison of melting and solidification time and corresponding temperature responses. The findings reveal that both fins and metal foam effectively improve melting and solidification performance, with fins exhibiting more pronounced temperature responses, while metal foam demonstrates enhanced temperature uniformity. The comprehensive utilization of the fin-foam metal structure demonstrates the best heat storage/release performance. Compared to the pure phase change material (PCM) structure, heat storage and release time are reduced by 61.6% and 82%, respectively, while the average temperature response during the heat storage and release process improves by 122.4% and 429.8%.

References

1.
Chen
,
J. G.
,
Crooks
,
R. M.
,
Seefeldt
,
L. C.
,
Bren
,
K. L.
,
Bullock
,
R. M.
,
Darensbourg
,
M. Y.
,
Holland
,
P. L.
, et al.,
2018
, “
Beyond Fossil Fuel–Driven Nitrogen Transformations
,”
Science
,
360
(
6391
), p.
eaar6611
.10.1126/science.aar6611
2.
Zhang
,
Y.
,
Brooks
,
G.
,
Rhamdhani
,
A.
, and
Guo
,
C.
,
2021
, “
Review on Solar Thermochemical Processing for Lunar Applications and Their Heat Transfer Modeling Methods
,”
ASME J. Heat Mass Transfer
,
143
(
12
), p.
120801
.10.1115/1.4052080
3.
Schill
,
W.-P.
,
Pahle
,
M.
, and
Gambardella
,
C.
,
2017
, “
Start-Up Costs of Thermal Power Plants in Markets With Increasing Shares of Variable Renewable Generation
,”
Nat. Energy
,
2
(
6
), pp.
1
6
.10.1038/nenergy.2017.50
4.
Carlson
,
F.
, and
Davidson
,
J. H.
,
2020
, “
On the Use of Thermal Energy Storage for Flexible Baseload Power Plants: Thermodynamic Analysis of Options for a Nuclear Rankine Cycle
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
5
), p.
052904
.10.1115/1.4045230
5.
Lawan
,
S. M.
, and
Abidin
,
W. A. W. Z.
,
2020
, “
A Review of Hybrid Renewable Energy Systems Based on Wind and Solar Energy: Modeling, Design and Optimization
,”
Wind Sol. Hybrid Renewable Energy Syst.
,
A. E.
Okedu
,
A.
Tahour
, and
A. G.
Aissaou
, eds.,
IntechOpen
,
London, UK
.10.5772/intechopen.85838
6.
Yang
,
Y.
,
Chang
,
J.-Y.
,
Sabbaghi
,
P.
, and
Wang
,
L.
,
2017
, “
Performance Analysis of a Near-Field Thermophotovoltaic Device With a Metallodielectric Selective Emitter and Electrical Contacts for the Photovoltaic Cell
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
5
), p.
052701
.10.1115/1.4034839
7.
Braff
,
W. A.
,
Mueller
,
J. M.
, and
Trancik
,
J. E.
,
2016
, “
Value of Storage Technologies for Wind and Solar Energy
,”
Nat. Clim. Change
,
6
(
10
), pp.
964
969
.10.1038/nclimate3045
8.
Shabgard
,
H.
,
Li
,
X.
, and
Faghri
,
A.
,
2022
, “
Opportunities and Challenges in Passive Thermal-Fluid and Energy Systems
,”
ASME J. Heat Mass Transfer
,
145
(
3
), p.
030802
.10.1115/1.4055342
9.
Vecchi
,
A.
,
Li
,
Y.
,
Ding
,
Y.
,
Mancarella
,
P.
, and
Sciacovelli
,
A.
,
2021
, “
Liquid Air Energy Storage (LAES): A Review on Technology State-of-the-Art, Integration Pathways and Future Perspectives
,”
Adv. Appl. Energy
,
3
, p.
100047
.10.1016/j.adapen.2021.100047
10.
Huang
,
X.
,
Zhou
,
R.
,
Luo
,
X.
,
Yang
,
X.
,
Cheng
,
J.
, and
Yan
,
J.
,
2023
, “
Experimental Research and Multi-Physical Modeling Progress of Zinc-Nickel Single Flow Battery: A Critical Review
,”
Adv. Appl. Energy
,
12
, p.
100154
.10.1016/j.adapen.2023.100154
11.
Borri
,
E.
,
Tafone
,
A.
,
Romagnoli
,
A.
, and
Comodi
,
G.
,
2021
, “
A Review on Liquid Air Energy Storage: History, State of the Art and Recent Developments
,”
Renewable Sustainable Energy Rev.
,
137
, p.
110572
.10.1016/j.rser.2020.110572
12.
Hu
,
S.
,
Yang
,
Z.
,
Li
,
J.
, and
Duan
,
Y.
,
2021
, “
Thermo-Economic Analysis of the Pumped Thermal Energy Storage With Thermal Integration in Different Application Scenarios
,”
Energy Convers. Manage.
,
236
, p.
114072
.10.1016/j.enconman.2021.114072
13.
He
,
X.
,
Hu
,
J.
,
Zhao
,
Z.
,
Lin
,
J.
,
Xiao
,
P.
,
Yang
,
J.
, and
Yang
,
J.
,
2023
, “
Water Column Separation Under One-After-Another Load Rejection in Pumped Storage Station
,”
Energy
,
278
, p.
127809
.10.1016/j.energy.2023.127809
14.
Tsiklios
,
C.
,
Schneider
,
S.
,
Hermesmann
,
M.
, and
Müller
,
T.
,
2023
, “
Efficiency and Optimal Load Capacity of E-Fuel-Based Energy Storage Systems
,”
Adv. Appl. Energy
,
10
, p.
100140
.10.1016/j.adapen.2023.100140
15.
Huang
,
X.
,
Li
,
F.
,
Xiao
,
T.
,
Li
,
Y.
,
Yang
,
X.
, and
He
,
Y.-L.
,
2023
, “
Structural Optimization of Melting Process of a Latent Heat Energy Storage Unit and Application of Flip Mechanism
,”
Energy
,
280
, p.
128164
.10.1016/j.energy.2023.128164
16.
Marri
,
G. K.
,
Srikanth
,
R.
, and
Balaji
,
C.
,
2023
, “
Multiple Phase Change Material-Based Heat Sink for Cooling of Electronics: A Combined Experimental and Numerical Study
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
4
), p.
043001
.10.1115/1.4056543
17.
Huang
,
X.
,
Li
,
F.
,
Lu
,
L.
,
Li
,
Z.
,
Yang
,
X.
, and
Yan
,
J.
,
2023
, “
Depth Optimization of Solidification Properties of a Latent Heat Energy Storage Unit Under Constant Rotation Mechanism
,”
Energy Build.
,
290
, p.
113099
.10.1016/j.enbuild.2023.113099
18.
Upadhyay
,
S.
,
Savant
,
P. R.
,
Chandra
,
L.
, and
Sarkar
,
J.
,
2022
, “
Generalized Nusselt Number Correlation for Binary Hybrid Nano-Oils as Heat Transfer Fluid in Solar Thermal Systems
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
7
), p.
072901
.10.1115/1.4054279
19.
Hassan
,
R.
,
Das
,
B. K.
, and
Al-Abdeli
,
Y. M.
,
2022
, “
Investigation of a Hybrid Renewable-Based Grid-Independent Electricity-Heat Nexus: Impacts of Recovery and Thermally Storing Waste Heat and Electricity
,”
Energy Convers. Manage.
,
252
, p.
115073
.10.1016/j.enconman.2021.115073
20.
Reddy
,
B. V. K.
,
Barry
,
M.
,
Li
,
J.
, and
Chyu
,
M. K.
,
2013
, “
Thermoelectric Performance of Novel Composite and Integrated Devices Applied to Waste Heat Recovery
,”
ASME J. Heat Mass Transfer
,
135
(
3
), p.
031706
.10.1115/1.4007892
21.
Romanchenko
,
D.
,
Kensby
,
J.
,
Odenberger
,
M.
, and
Johnsson
,
F.
,
2018
, “
Thermal Energy Storage in District Heating: Centralised Storage vs. storage in Thermal Inertia of Buildings
,”
Energy Conver. Manage.
,
162
, pp.
26
38
.10.1016/j.enconman.2018.01.068
22.
Liu
,
Z.
,
Chen
,
Y.
,
Yang
,
X.
, and
Yan
,
J.
,
2023
, “
Power to Heat: Opportunity of Flexibility Services Provided by Building Energy Systems
,”
Adv. Appl. Energy
,
11
, p.
100149
.10.1016/j.adapen.2023.100149
23.
Lugolole
,
R.
,
Mawire
,
A.
,
Lentswe
,
K.
,
Okello
,
D.
, and
Nyeinga
,
K.
,
2018
, “
Thermal Performance Comparison of Three Sensible Heat Thermal Energy Storage Systems During Charging Cycles
,”
Sustainable Energy Technol. Assess.
,
30
, pp.
37
51
.10.1016/j.seta.2018.09.002
24.
Bejan
,
A.
,
1978
, “
Two Thermodynamic Optima in the Design of Sensible Heat Units for Energy Storage
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
100
(
4
), pp.
708
712
.10.1115/1.3450882
25.
Zhang
,
N.
, and
Yuan
,
Y.
,
2020
, “
Synthesis and Thermal Properties of Nanoencapsulation of Paraffin as Phase Change Material for Latent Heat Thermal Energy Storage
,”
Energy Built Environ.
,
1
(
4
), pp.
410
416
.10.1016/j.enbenv.2020.04.003
26.
Huang
,
X.
,
Li
,
F.
,
Li
,
Z.
,
Yang
,
X.
, and
Li
,
M.-J.
,
2023
, “
An in-Depth Study on Melting Performance of Latent Heat Thermal Energy Storage System Under Rotation Mechanism by Fluctuating Heat Source
,”
Sol. Energy Mater. Sol. Cells
,
263
, p.
112584
.10.1016/j.solmat.2023.112584
27.
Pardo
,
P.
,
Deydier
,
A.
,
Anxionnaz-Minvielle
,
Z.
,
Rougé
,
S.
,
Cabassud
,
M.
, and
Cognet
,
P.
,
2014
, “
A Review on High Temperature Thermochemical Heat Energy Storage
,”
Renewable Sustainable Energy Rev.
,
32
, pp.
591
610
.10.1016/j.rser.2013.12.014
28.
Wu
,
W.
,
2020
, “
Low-Temperature Compression-Assisted Absorption Thermal Energy Storage Using Ionic Liquids
,”
Energy Built Environ.
,
1
(
2
), pp.
139
148
.10.1016/j.enbenv.2019.11.001
29.
Zhang
,
S.
,
Feng
,
D.
,
Shi
,
L.
,
Wang
,
L.
,
Jin
,
Y.
,
Tian
,
L.
,
Li
,
Z.
,
Wang
,
G.
,
Zhao
,
L.
, and
Yan
,
Y.
,
2021
, “
A Review of Phase Change Heat Transfer in Shape-Stabilized Phase Change Materials (ss-PCMs) Based on Porous Supports for Thermal Energy Storage
,”
Renewable Sustainable Energy Rev.
,
135
, p.
110127
.10.1016/j.rser.2020.110127
30.
Huang
,
X.
,
Li
,
F.
,
Liu
,
Z.
,
Gao
,
X.
,
Yang
,
X.
, and
Yan
,
J.
,
2023
, “
Design and Optimization of a Novel Phase Change Photovoltaic Thermal Utilization Structure for Building Envelope
,”
Renewable Energy
,
218
, p.
119269
.10.1016/j.renene.2023.119269
31.
Huang
,
X.
,
Li
,
F.
,
Guo
,
J.
,
Li
,
Y.
,
Du
,
R.
,
Yang
,
X.
, and
He
,
Y.
,
2024
, “
Design Optimization on Solidification Performance of a Rotating Latent Heat Thermal Energy Storage System Subject to Fluctuating Heat Source
,”
Appl. Energy
,
362
, p.
122997
.10.1016/j.apenergy.2024.122997
32.
Cui
,
W.
,
Si
,
T.
,
Li
,
X.
,
Li
,
X.
,
Lu
,
L.
,
Ma
,
T.
, and
Wang
,
Q.
,
2022
, “
Heat Transfer Enhancement of Phase Change Materials Embedded With Metal Foam for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
169
, p.
112912
.10.1016/j.rser.2022.112912
33.
Shakibi
,
H.
,
Shokri
,
A.
,
Sobhani
,
B.
, and
Yari
,
M.
,
2023
, “
Numerical Analysis and Optimization of a Novel Photovoltaic Thermal Solar Unit Improved by Nano-PCM as an Energy Storage Media and Finned Collector
,”
Renewable Sustainable Energy Rev.
,
179
, p.
113230
.10.1016/j.rser.2023.113230
34.
Pitié
,
F.
,
Zhao
,
C.
, and
Cáceres
,
G.
,
2011
, “
Thermo-Mechanical Analysis of Ceramic Encapsulated Phase-Change-Material (PCM) Particles
,”
Energy Environ. Sci.
,
4
(
6
), pp.
2117
2124
.10.1039/c0ee00672f
35.
Ni
,
H.
,
Wu
,
J.
,
Sun
,
Z.
,
Lu
,
G.
, and
Yu
,
J.
,
2019
, “
Molecular Simulation of the Structure and Physical Properties of Alkali Nitrate Salts for Thermal Energy Storage
,”
Renewable Energy
,
136
, pp.
955
967
.10.1016/j.renene.2019.01.044
36.
Bazri
,
S.
,
Badruddin
,
I. A.
,
Naghavi
,
M. S.
, and
Bahiraei
,
M.
,
2018
, “
A Review of Numerical Studies on Solar Collectors Integrated With Latent Heat Storage Systems Employing Fins or Nanoparticles
,”
Renewable Energy
,
118
, pp.
761
778
.10.1016/j.renene.2017.11.030
37.
Safari
,
V.
,
Abolghasemi
,
H.
, and
Kamkari
,
B.
,
2021
, “
Experimental and Numerical Investigations of Thermal Performance Enhancement in a Latent Heat Storage Heat Exchanger Using Bifurcated and Straight Fins
,”
Renewable Energy
,
174
, pp.
102
121
.10.1016/j.renene.2021.04.076
38.
Wu
,
J.
,
Chen
,
Q.
,
Zhang
,
Y.
, and
Sun
,
K.
,
2021
, “
Phase Change Material Heat Transfer Enhancement in Latent Heat Thermal Energy Storage Unit With Single Fin: Comprehensive Effect of Position and Length
,”
J. Energy Storage
,
42
, p.
103101
.10.1016/j.est.2021.103101
39.
Li
,
H.
,
Hu
,
C.
,
He
,
Y.
,
Wang
,
K.
, and
Tang
,
D.
,
2022
, “
Pore-Scale Study on Rayleigh-Bénard Convection Formed in the Melting Process of Metal Foam Composite Phase Change Material
,”
Int. J. Therm. Sci.
,
177
, p.
107572
.10.1016/j.ijthermalsci.2022.107572
40.
Liu
,
Y.
,
Sun
,
L.
,
Zheng
,
J.-N.
,
Yang
,
L.
,
Jiang
,
L.
, and
Song
,
Y.
,
2023
, “
Numerical Simulation Study of the Phase Transition Heat Transfer of Nanoparticle-Enhanced Heat Storage Tubes
,”
Appl. Therm. Eng.
,
231
, p.
121010
.10.1016/j.applthermaleng.2023.121010
41.
Chabane
,
F.
, and
Aouissi
,
Z.
,
2024
, “
Experimental Investigations on the Thermal Efficiency of a Solar Air Collector With Transverse Rectangular Baffles Inclined by an Angle of 135°
,”
Energy Built Environ.
,
5
(
4
), pp.
544
555
.10.1016/j.enbenv.2023.04.004
42.
Liu
,
X.
,
Qin
,
X.
,
Tian
,
Y.
,
Luo
,
Q.
,
Yao
,
H.
,
Wang
,
J.
,
Dang
,
C.
,
Xu
,
Q.
,
Lv
,
S.
, and
Xuan
,
Y.
,
2023
, “
Biomimetic Optimized Vertically Aligned Annular Fins for Fast Latent Heat Thermal Energy Storage
,”
Appl. Energy
,
347
, p.
121435
.10.1016/j.apenergy.2023.121435
43.
Li
,
C.
,
Li
,
Q.
, and
Ge
,
R.
,
2023
, “
Comparison of Performance Enhancement in a Shell and Tube Based Latent Heat Thermal Energy Storage Device Containing Different Structured Fins
,”
Renewable Energy
,
206
, pp.
994
1006
.10.1016/j.renene.2023.02.087
44.
Yang
,
B.
,
Guo
,
G.
,
Huang
,
X.
,
Li
,
Z.
,
Yang
,
X.
, and
Li
,
M.
,
2024
, “
Evaluation of Variable Rotation on Enhancing Thermal Performance of Phase Change Heat Storage Tank
,”
Int. J. Heat Fluid Flow
,
106
, p.
109328
.10.1016/j.ijheatfluidflow.2024.109328
45.
Yang
,
C.
,
Xu
,
Y.
,
Xu
,
X.
,
Bake
,
M.
,
Wu
,
C.
,
Li
,
Y.
, and
Yu
,
J.
,
2024
, “
Melting Performance Analysis of Finned Metal Foam Thermal Energy Storage Tube Under Steady Rotation
,”
Int. J. Heat Mass Transfer
,
226
, p.
125458
.10.1016/j.ijheatmasstransfer.2024.125458
46.
Balli
,
L.
,
Hlimi
,
M.
,
Achenani
,
Y.
,
Atifi
,
A.
, and
Hamri
,
B.
,
2024
, “
Experimental Study and Numerical Modeling of the Thermal Behavior of an Industrial Prototype Ceramic Furnace: Energy and Environmental Optimization
,”
Energy Built Environ.
,
5
(
2
), pp.
244
254
.10.1016/j.enbenv.2022.10.001
47.
Li
,
W. Q.
,
Guo
,
S. J.
,
Tan
,
L.
,
Liu
,
L. L.
, and
Ao
,
W.
,
2021
, “
Heat Transfer Enhancement of Nano-Encapsulated Phase Change Material (NEPCM) Using Metal Foam for Thermal Energy Storage
,”
Int. J. Heat Mass Transfer
,
166
, p.
120737
.10.1016/j.ijheatmasstransfer.2020.120737
48.
Mahdi
,
J. M.
, and
Nsofor
,
E. C.
,
2018
, “
Multiple-Segment Metal Foam Application in the Shell-and-Tube PCM Thermal Energy Storage System
,”
J. Energy Storage
,
20
, pp.
529
541
.10.1016/j.est.2018.09.021
49.
Xu
,
Y.
,
Li
,
M.-J.
,
Zheng
,
Z.-J.
, and
Xue
,
X.-D.
,
2018
, “
Melting Performance Enhancement of Phase Change Material by a Limited Amount of Metal Foam: Configurational Optimization and Economic Assessment
,”
Appl. Energy
,
212
, pp.
868
880
.10.1016/j.apenergy.2017.12.082
50.
Feng
,
S.
,
Shi
,
M.
,
Li
,
Y.
, and
Lu
,
T. J.
,
2015
, “
Pore-Scale and Volume-Averaged Numerical Simulations of Melting Phase Change Heat Transfer in Finned Metal Foam
,”
Int. J. Heat Mass Transfer
,
90
, pp.
838
847
.10.1016/j.ijheatmasstransfer.2015.06.088
51.
Soltani
,
H.
,
Soltani
,
M.
,
Karimi
,
H.
, and
Nathwani
,
J.
,
2022
, “
Optimization of Shell and Tube Thermal Energy Storage Unit Based on the Effects of Adding Fins, Nanoparticles and Rotational Mechanism
,”
J. Cleaner Prod.
,
331
, p.
129922
.10.1016/j.jclepro.2021.129922
52.
Eslami
,
M.
,
Khosravi
,
F.
, and
Kohan
,
H.
,
2021
, “
Effects of Fin Parameters on Performance of Latent Heat Thermal Energy Storage Systems: A Comprehensive Review
,”
Sustainable Energy Technol. Assess.
,
47
, p.
101449
.10.1016/j.seta.2021.101449
53.
Antonellis
,
S.
,
Colombo
,
L.
,
Castellazzi
,
P.
,
Rossetti
,
A.
, and
Marocco
,
L.
,
2024
, “
System Integration Analysis of a Zeolite 13x Thermal Energy Storage
,”
Energy Built Environ.
,
5
(
4
), pp.
568
579
.10.1016/j.enbenv.2023.04.006
54.
Cui
,
W.
,
Si
,
T.
,
Li
,
X.
,
Li
,
X.
,
Lu
,
L.
,
Ma
,
T.
, and
Wang
,
Q.
,
2022
, “
Heat Transfer Analysis of Phase Change Material Composited With Metal Foam-Fin Hybrid Structure in Inclination Container by Numerical Simulation and Artificial Neural Network
,”
Energy Rep.
,
8
, pp.
10203
10218
.10.1016/j.egyr.2022.07.178
55.
Yang
,
C.
,
Xu
,
Y.
,
Cai
,
X.
, and
Zheng
,
Z.-J.
,
2021
, “
Melting Behavior of the Latent Heat Thermal Energy Storage Unit With Fins and Graded Metal Foam
,”
Appl. Therm. Eng.
,
198
, p.
117462
.10.1016/j.applthermaleng.2021.117462
56.
Sevilla
,
L. T.
, and
Radulovic
,
J.
,
2021
, “
Investigation of Low Grade Thermal Energy Storage Systems With Phase Changing Materials
,”
Energy Built Environ.
,
2
(
4
), pp.
366
373
.10.1016/j.enbenv.2020.05.006
You do not currently have access to this content.