Abstract

In this study, an innovative guiding pin-fin array optimization has been developed through three-dimensional numerical simulations to enhance the cooling efficiency of gas turbine blade trailing edge. The guiding pin-fin array is optimized using the Kriging surrogate model and Genetic Algorithm (GA), aiming to significantly improve the heat transfer rates and uniformity within the wedge-shaped channel. The design parameter chosen for optimization is the deflection angle of each guiding pin fin, and the optimization process is conducted in two rounds. The first-round optimization yields a first-optimized guiding pin-fin array, which exhibits superior overall heat transfer performance and reasonable pressure loss compared to conventional circular, oblong, and parallel pin-fin arrays. For the first-optimized guiding pin-fin (1st-OGP) channel at the Reynolds number of Re = 50,000, the total Nusselt number and pressure loss are 44.1% higher and 9.9% lower than those of the baseline circular pin-fin array (CP), respectively. An experimental validation using the transient liquid crystal (TLC) thermography method is carried out and proves the effectiveness of the optimization process. However, it is noted that the first-optimized guiding pin-fin exhibits even lower heat transfer at a low Reynolds number of Re = 10,000, particularly in the channel middle region, which is mainly due to the incapable turning flow control in the root region of the wedged channel. To address this issue and further improve the heat transfer performance at low Reynolds numbers, a second-round optimization is performed by specifically adjusting the deflection angle of the selected guiding pin fins near the root region of the wedged channel. This secondary optimization demonstrates significant heat transfer improvements over the whole studied Reynolds number range with a reasonably reduced consumption of computational resources. The total Nusselt number and pressure loss are 69.3% higher and 11.9% lower than those of the baseline circular pin-fin array, respectively, at Re = 50,000. The optimization process proposed in this paper produces a high-performance cooling structure design with elaborate guiding pin-fin arrangements in the wedge-shaped channel, which indicates high heat transfer enhancement and relatively lower pressure loss in the wedged channel for the turbine blade trailing edge.

References

1.
Du
,
W.
,
Luo
,
L.
,
Jiao
,
Y.
,
Wang
,
S.
,
Li
,
X.
, and
Sunden
,
B.
,
2021
, “
Heat Transfer in the Trailing Region of Gas Turbines – A State-of-the-Art Review
,”
Appl. Therm. Eng.
,
199
, p.
117614
.10.1016/j.applthermaleng.2021.117614
2.
Armstrong
,
J.
, and
Winstanley
,
D.
,
1988
, “
A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications
,”
ASME J. Turbomach.
,
110
(
1
), pp.
94
103
.10.1115/1.3262173
3.
Jubran
,
B. A.
,
Hamdan
,
M. A.
, and
Abdualh
,
R. M.
,
1993
, “
Enhanced Heat Transfer, Missing Pin, and Optimization for Cylindrical Pin Fin Arrays
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
115
(
3
), pp.
576
583
.10.1115/1.2910727
4.
Li
,
Q.
,
Chen
,
Z.
,
Flechtner
,
U.
, and
Warnecke
,
H.-J.
,
1998
, “
Heat Transfer and Pressure Drop Characteristics in Rectangular Channels With Elliptic Pin Fins
,”
Int. J. Heat Fluid Flow
,
19
(
3
), pp.
245
250
.10.1016/S0142-727X(98)00003-4
5.
Metzger
,
D. E.
,
Fan
,
C. S.
, and
Haley
,
S. W.
,
1984
, “
Effects of Pin Shape and Array Orientation on Heat Transfer and Pressure Loss in Pin Fin Arrays
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
252
257
.10.1115/1.3239545
6.
Otto
,
M.
,
Gupta
,
G.
,
Tran
,
P. K.
,
Ghosh
,
S.
, and
Kapat
,
J. S.
,
2021
, “
Investigation of Endwall Heat Transfer in Staggered Pin Fin Arrays
,”
ASME J. Turbomach.
,
143
(
2
), p.
021009
.10.1115/1.4049784
7.
Otto
,
M.
,
Kapat
,
J.
,
Ricklick
,
M.
, and
Mhetras
,
S.
,
2022
, “
Heat Transfer in a Rib Turbulated Pin Fin Array for Trailing Edge Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
4
), p.
041012
.10.1115/1.4051766
8.
Saha
,
A. K.
, and
Acharya
,
S.
,
2004
, “
Unsteady Simulation of Turbulent Flow And Heat Transfer in a Channel With Periodic Array of Cubic Pin‐Fins
,”
Numer. Heat Transfer, Part A
,
46
(
8
), pp.
731
763
.10.1080/104077890504465
9.
Uzol
,
O.
, and
Camci
,
C.
,
2005
, “
Heat Transfer, Pressure Loss and Flow Field Measurements Downstream of Staggered Two-Row Circular and Elliptical Pin Fin Arrays
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
127
(
5
), pp.
458
471
.10.1115/1.1860563
10.
Won
,
S. Y.
,
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
,
2004
, “
Spatially-Resolved Heat Transfer and Flow Structure in a Rectangular Channel With Pin Fins
,”
Int. J. Heat Mass Transfer
,
47
(
8–9
), pp.
1731
1743
.10.1016/j.ijheatmasstransfer.2003.10.007
11.
Jin
,
W.
,
Wu
,
J.
,
Jia
,
N.
,
Lei
,
J.
,
Ji
,
W.
, and
Xie
,
G.
,
2021
, “
Effect of Shape and Distribution of Pin-Fins on the Flow and Heat Transfer Characteristics in the Rectangular Cooling Channel
,”
Int. J. Therm. Sci.
,
161
, p.
106758
.10.1016/j.ijthermalsci.2020.106758
12.
Liang
,
D.
,
Chen
,
W.
,
Ju
,
Y.
, and
Chyu
,
M. K.
,
2021
, “
Comparing Endwall Heat Transfer Among Staggered Pin Fin, Kagome and Body Centered Cubic Arrays
,”
Appl. Therm. Eng.
,
185
, p.
116306
.10.1016/j.applthermaleng.2020.116306
13.
Yan
,
H.
,
Luo
,
L.
,
Zhang
,
J.
,
Du
,
W.
,
Wang
,
S.
, and
Huang
,
D.
,
2021
, “
Flow Structure and Heat Transfer Characteristics of a Pin-Finned Channel With Upright/Curved/Inclined Pin Fins Under Stationary and Rotating Conditions
,”
Int. Commun. Heat Mass Transfer
,
127
, p.
105483
.10.1016/j.icheatmasstransfer.2021.105483
14.
Luo
,
L.
,
Yan
,
H.
,
Du
,
W.
,
Su
,
W.
,
Wang
,
S.
, and
Huang
,
D.
,
2022
, “
Numerical Study of a Novel Curved Pin Fin for Heat Transfer Enhancement Within Aeroengine Turbine Blade
,”
Aerosp. Sci. Technol.
,
123
, p.
107436
.10.1016/j.ast.2022.107436
15.
Chang
,
S. W.
, and
Hu
,
Y.-W.
,
2014
, “
Endwall Thermal Performances of Radially Rotating Rectangular Channel With Pin–Fins on Skewed Rib Lands
,”
Int. J. Heat Mass Transfer
,
69
, pp.
173
190
.10.1016/j.ijheatmasstransfer.2013.10.029
16.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S.
, and
Zhang
,
X.
,
2018
, “
Effect of the Dimple Location and Rotating Number on the Heat Transfer and Flow Structure in a Pin Finned Channel
,”
Int. J. Heat Mass Transfer
,
127
, pp.
111
129
.10.1016/j.ijheatmasstransfer.2018.08.045
17.
Hossain
,
M. A.
,
Ameri
,
A.
, and
Bons
,
J.
,
2021
, “
Conjugate Heat Transfer Study of Innovative Pin-Fin Cooling Configuration
,”
J. Propul. Power
,
37
(
4
), pp.
604
614
.10.2514/1.B37980
18.
Wright
,
L. M.
,
Liu
,
Y.-H.
,
Han
,
J.-C.
, and
Chopra
,
S.
,
2008
, “
Heat Transfer in Trailing Edge, Wedge-Shaped Cooling Channels Under High Rotation Numbers
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
130
(
7
), p.
071701
.10.1115/1.2907437
19.
Rallabandi
,
A. P.
,
Liu
,
Y.-H.
, and
Han
,
J.-C.
,
2011
, “
Heat Transfer in Trailing Edge Wedge-Shaped Pin-Fin Channels With Slot Ejection Under High Rotation Numbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
021007
.10.1115/1.4003746
20.
Li
,
Y.
,
Shen
,
B.
,
Yan
,
H.
,
Boetcher
,
S. K. S.
, and
Xie
,
G.
,
2020
, “
Heat Transfer Enhancement of Rotating Wedge-Shaped Channels With Pin Fins and Kagome Lattices
,”
Numer. Heat Transfer, Part A
,
77
(
12
), pp.
1014
1033
.10.1080/10407782.2020.1746613
21.
Liang
,
C.
,
Rao
,
Y.
,
Chen
,
J.
, and
Zhang
,
P.
,
2022
, “
Experimental and Numerical Study of the Turbulent Flow and Heat Transfer in a Wedge-Shaped Channel With Guiding Pin Fin Arrays Under Rotating Conditions
,”
ASME J. Turbomach.
,
144
(
7
), p.
071007
.10.1115/1.4053488
22.
Liang
,
C.
,
Rao
,
Y.
,
Luo
,
J.
, and
Luo
,
X.
,
2021
, “
Experimental and Numerical Study of Turbulent Flow and Heat Transfer in a Wedge-Shaped Channel With Guiding Pin Fins for Turbine Blade Trailing Edge Cooling
,”
Int. J. Heat Mass Transfer
,
178
, p.
121590
.10.1016/j.ijheatmasstransfer.2021.121590
23.
He
,
Q.
,
Zhao
,
W.
,
Chi
,
Z.
, and
Zang
,
S.
,
2022
, “
Application of Deep-Learning Method in the Conjugate Heat Transfer Optimization of Full-Coverage Film Cooling on Turbine Vanes
,”
Int. J. Heat Mass Transfer
,
195
, p.
123148
.10.1016/j.ijheatmasstransfer.2022.123148
24.
Tejaswini
,
M.
, and
Sivapragasam
,
M.
,
2021
, “
Multi-Objective Design Optimization of Turbine Blade Leading Edge for Enhanced Aerothermal Performance
,”
Sādhanā
,
46
(
4
), p.
190
.10.1007/s12046-021-01707-z
25.
Yeranee
,
K.
,
Rao
,
Y.
,
Yang
,
L.
, and
Li
,
H.
,
2022
, “
Enhanced Thermal Performance of a Pin-Fin Cooling Channel for Gas Turbine Blade by Density-Based Topology Optimization
,”
Int. J. Therm. Sci.
,
181
, p.
107783
.10.1016/j.ijthermalsci.2022.107783
26.
Matheron
,
G.
,
1963
, “
Principles of Geostatistics
,”
Econ. Geol.
,
58
(
8
), pp.
1246
1266
.10.2113/gsecongeo.58.8.1246
27.
Kim
,
K.-Y.
, and
Moon
,
M.-A.
,
2009
, “
Optimization of a Stepped Circular Pin-Fin Array to Enhance Heat Transfer Performance
,”
Heat Mass Transfer
,
46
(
1
), pp.
63
74
.10.1007/s00231-009-0544-3
28.
Moon
,
M.-A.
,
Husain
,
A.
, and
Kim
,
K.-Y.
,
2010
, “
Shape Optimization of a Rotating Cooling Channel With Pin-Fins
,”
Taehan Kigye Hakhoe Nonmunjip. B
,
34
(
7
), pp.
703
714
.10.3795/KSME-B.2010.34.7.703
29.
Moon
,
M.-A.
,
Husain
,
A.
, and
Kim
,
K.-Y.
,
2012
, “
Multi-Objective Optimization of a Rotating Cooling Channel With Staggered Pin-Fins for Heat Transfer Augmentation
,”
Int. J. Numer. Methods Fluids
,
68
(
7
), pp.
922
938
.10.1002/fld.2590
30.
Moon
,
M.-A.
, and
Kim
,
K.-Y.
,
2014
, “
Analysis and Optimization of Fan-Shaped Pin–Fin in a Rectangular Cooling Channel
,”
Int. J. Heat Mass Transfer
,
72
, pp.
148
162
.10.1016/j.ijheatmasstransfer.2013.12.085
31.
Reddy
,
S. R.
, and
Dulikravich
,
G. S.
,
2017
, “
Inverse Design of Cooling Arrays of Micro Pin-Fins Subject to Specified Coolant Inlet Temperature and Hot Spot Temperature
,”
Heat Transfer Eng.
,
38
(
13
), pp.
1147
1156
.10.1080/01457632.2016.1239924
32.
Sahiti
,
N.
,
Durst
,
F.
, and
Geremia
,
P.
,
2007
, “
Selection and Optimization of Pin Cross-Sections for Electronics Cooling
,”
Appl. Therm. Eng.
,
27
(
1
), pp.
111
119
.10.1016/j.applthermaleng.2006.05.018
33.
Watson
,
R.
, and
Tucker
,
P.
,
2016
, “
Perfectly Parallel Optimization for Cutback Trailing Edges
,”
AIAA J.
,
54
(
7
), pp.
2051
2060
.10.2514/1.J053807
34.
Zhong
,
W.
,
Qiao
,
C.
,
Peng
,
X.
,
Li
,
Z.
,
Fan
,
C.
, and
Qian
,
F.
,
2019
, “
Operation Optimization of Hydrocracking Process Based on Kriging Surrogate Model
,”
Control Eng. Pract.
,
85
, pp.
34
40
.10.1016/j.conengprac.2019.01.001
35.
Galletly
,
J. E.
,
1992
, “
An Overview of Genetic Algorithms
,”
Kybernetes
,
21
(
6
), pp.
26
30
.10.1108/eb005943
36.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
You do not currently have access to this content.