Abstract

Highly automated vehicles (HAVs) must be rigorously evaluated before they are deployed on public roads. An accelerated evaluation framework was proposed in the literature to test HAVs more efficiently. However, running such a test is challenging due to the fact that some of the generated test cases may be not feasible or realistic. This paper proposes an improved accelerated evaluation framework that combines importance sampling with reachability analysis, so that the feasibility of all test cases are guaranteed, and the risk levels of cases are controlled. The performance of the proposed framework is studied using the unprotected pedestrian crossing scenario. A total od 2689 pedestrian–vehicle interaction events are extracted from open-source video data, and a truncated Gaussian mixture model (TGMM) is developed to describe the pedestrian–vehicle interaction. Simulation results show that the proposed method achieves unbiased crash rate estimation in an accelerated fashion while achieving the aforementioned benefits for test case generation (feasible and at controlled risk level).

References

1.
Tesla in Fatal California Crash Was on Autopilot
,”
BBC News
.
2.
Why Uber’s Self-Driving Crash Is Confusing for Humans
,”
WIRED
.
3.
Euro NCAP
,
2017
. “
European New Car Assessment Programme Test Protocol—AEB VRU Systems
,
Technical Report
.
4.
Chou
,
G.
,
Sahin
,
Y. E.
,
Yang
,
L.
,
Rutledge
,
K. J.
,
Nilsson
,
P.
, and
Ozay
,
N.
,
2018
, “
Using Control Synthesis to Generate Corner Cases: A Case Study on Autonomous Driving
,”
IEEE Trans. Comput. Aided Design Int. Circuits Syst.
,
37
(
11
), pp.
2906
2917
. 10.1109/TCAD.2018.2858464
5.
Zhao
,
D.
,
Lam
,
H.
,
Peng
,
H.
,
Bao
,
S.
,
LeBlanc
,
D. J.
,
Nobukawa
,
K.
, and
Pan
,
C. S.
,
2017
, “
Accelerated Evaluation of Automated Vehicles Safety in Lane-Change Scenarios Based on Importance Sampling Techniques
,”
IEEE Trans. Comput. Aided Design Int. Circuits Syst.
,
18
(
3
), pp.
595
607
. 10.1109/tits.2016.2582208
6.
Zhang
,
S.
,
Peng
,
H.
,
Zhao
,
D.
, and
Tseng
,
H. E.
,
2018
, “
Accelerated Evaluation of Autonomous Vehicles in the Lane Change Scenario Based on Subset Simulation Technique
,”
2018 21st International Conference on Intelligent Transportation Systems (ITSC)
,
Maui, HI
,
Nov. 4–7
,
IEEE
, pp.
3935
3940
.
7.
Zhao
,
D.
,
Huang
,
X.
,
Peng
,
H.
,
Lam
,
H.
, and
Leblanc
,
D. J.
,
2018
, “
Accelerated Evaluation of Automated Vehicles in Car-Following Maneuvers
,”
IEEE Trans. Comput. Aided Design Int. Circuits Syst.
,
19
(
3
), pp.
733
744
. 10.1109/tits.2017.2701846
8.
National Highway Traffic Safety Administration
,
2019
, “
Traffic Safety Facts: 2017 data—Pedestrians
,”
NHTSA
,
Technical Report
.
9.
Enzweiler
,
M.
, and
Gavrila
,
D. M.
,
2008
, “
Monocular Pedestrian Detection: Survey and Experiments
,”
IEEE Transactions on Pattern Analysis and Machine Intelligence
.
10.
Dollár
,
P.
,
Wojek
,
C.
,
Schiele
,
B.
, and
Perona
,
P.
,
2009
, “
Pedestrian Detection: A Benchmark
,”
2009 IEEE Conference on Computer Vision and Pattern Recognition
,
Miami Beach, FL
.
11.
Chen
,
B.
,
Zhao
,
D.
, and
Peng
,
H.
,
2017
, “
Evaluation of Automated Vehicles Encountering Pedestrians at Unsignalized Crossings
,”
2017 IEEE Intelligent Vehicles Symposium (IV)
,
Redondo Beach, CA
,
June 11–14
, pp.
1679
1685
.
12.
Schroeder
,
B.
,
2014
, “
Empirically-Based Performance Assessment & Simulation of Pedestrian Behavior at Unsignalized Crossings
,”
Technical Report No. 2012-016S
.
13.
Ismail
,
K.
,
Sayed
,
T.
, and
Saunier
,
N.
,
2010
, “
Automated Analysis of Pedestrian-Vehicle Conflicts
,”
Trans. Res. Rec.: J. Trans. Res. Board
,
2198
(
1
), pp.
52
64
. 10.3141/2198-07
14.
Redmon
,
J.
, and
Farhadi
,
A.
,
2018
,
YOLOv3: An Incremental Improvement
.
15.
Hartley
,
R.
, and
Zisserman
,
A.
,
2000
,
Multiple View Geometry in Computer Vision
, 2nd ed.,
Cambridge University Press
, New York.
16.
Knoblauch
,
R.
,
Pietrucha
,
M.
, and
Nitzburg
,
M.
,
1996
, “
Field Studies of Pedestrian Walking Speed and Start-Up Time
,”
Trans. Res. Rec.: J. Trans. Res. Board
,
1538
(
1
), pp.
27
38
. 10.1177/0361198196153800104
17.
Lee
,
G.
, and
Scott
,
C.
,
2012
, “
EM Algorithms for Multivariate Gaussian Mixture Models With Truncated and Censored Data
,”
Comput. Stat. Data Anal.
,
56
(
9
), pp.
2816
2829
. 10.1016/j.csda.2012.03.003
18.
Vogel
,
K.
,
2003
, “
A Comparison of Headway and Time to Collision as Safety Indicators
,”
Accident Anal. Prevention
,
35
(
3
), pp.
427
433
. 10.1016/S0001-4575(02)00022-2
19.
Herceg
,
M.
,
Kvasnica
,
M.
,
Jones
,
C. N.
, and
Morari
,
M.
,
2013
, “
Multi-Parametric Toolbox 3.0
,”
2013 European Control Conference (ECC)
,
Zurich, Switzerland
,
July 17–19
, pp.
502
510
.
20.
Borrelli
,
F.
,
Bemporad
,
A.
, and
Morari
,
M.
,
2017
,
Predictive Control For Linear and Hybrid Systems
,
Cambridge University Press
,
Cambridge, UK
.
21.
Lee
,
K.
, and
Peng
,
H.
,
2005
, “
Evaluation of Automotive Forward Collision Warning and Collision Avoidance Algorithms
,”
Vehicle Syst. Dynam.
,
43
(
10
), pp.
735
751
. 10.1080/00423110412331282850
22.
Horrace
,
W. C.
,
2005
, “
Some Results on the Multivariate Truncated Normal Distribution
,”
J. Multivar. Anal.
,
94
(
1
), pp.
209
221
. 10.1016/j.jmva.2004.10.007
You do not currently have access to this content.