Abstract

We propose a new theory for fluid–structure interactions of cantilever microbeams undergoing small amplitude vibrations in viscous fluids. The method is based on the concept of nonlocal modal hydrodynamic functions that accurately capture three-dimensional (3D) fluid loading on the structure. For short beams for which 3D effects become prominent, existing local theories based on two-dimensional (2D) fluid approximations are inadequate to predict the dynamic response. We discuss and compare model predictions in terms of frequency response functions, modal shapes, quality factors, and added mass ratios with the predictions of the local theory, and we validate our new model with experimental results.

References

1.
Maali
,
A.
,
Hurth
,
C.
,
Boisgard
,
R.
,
Jai
,
C.
,
Cohen-Bouhacina
,
T.
, and
Aimé
,
J.-P.
,
2005
, “
Hydrodynamics of Oscillating Atomic Force Microscopy Cantilevers in Viscous Fluids
,”
J. Appl. Phys.
,
97
(
7
), p.
074907
.
2.
Manzaneque
,
T.
,
Ruiz-Díez
,
V.
,
Hernando-García
,
J.
,
Wistrela
,
E.
,
Kucera
,
M.
,
Schmid
,
U.
, and
Sánchez-Rojas
,
J. L.
,
2014
, “
Piezoelectric MEMS Resonator-Based Oscillator for Density and Viscosity Sensing
,”
Sens. Actuators A.
,
220
, pp.
305
315
.
3.
Eastman
,
A.
, and
Kimber
,
M. L.
,
2014
, “
Flow Shaping and Thrust Enhancement of Sidewall Bounded Oscillating Cantilevers
,”
Int. J. Heat Fluid Flow
,
48
, pp.
35
42
.
4.
Behbahani
,
S. B.
, and
Tan
,
X.
,
2016
, “
Bio-Inspired Flexible Joints With Passive Feathering for Robotic Fish Pectoral Fins
,”
Bioinspir. Biomimet.
,
11
(
3
), p.
036009
.
5.
Tuck
,
E. O.
,
1969
, “
Calculation of Unsteady Flows Due to Small Motions of Cylinders in a Viscous Fluid
,”
J. Eng. Math.
,
3
(
1
), pp.
29
44
.
6.
Sader
,
J. E.
,
1998
, “
Frequency Response of Cantilever Beams Immersed in Viscous Fluids With Applications to the Atomic Force Microscope
,”
J. Appl. Phys.
,
84
(
1
), pp.
64
76
.
7.
Gesing
,
A.
,
Platz
,
D.
, and
Schmid
,
U.
,
2022
, “
A Numerical Method to Determine the Displacement Spectrum of Micro-Plates in Viscous Fluids
,”
Comput. Struct.
,
260
, p.
106716
.
8.
Atkinson
,
C.
, and
de Lara
,
M. M.
,
2007
, “
The Frequency Response of a Rectangular Cantilever Plate Vibrating in a Viscous Fluid
,”
J. Sound Vib.
,
300
(
1–2
), pp.
352
367
.
9.
Shen
,
N.
,
Chakraborty
,
D.
, and
Sader
,
J. E.
,
2023
, “
Frequency Response of Cantilevered Plates of Small Aspect Ratio Immersed in Viscous Fluids
,”
J. Appl. Phys.
,
133
(
3
), p.
034501
.
10.
Green
,
C. P.
, and
Sader
,
J. E.
,
2002
, “
Torsional Frequency Response of Cantilever Beams Immersed in Viscous Fluids With Applications to the Atomic Force Microscope
,”
J. Appl. Phys.
,
92
(
10
), pp.
6262
6274
.
11.
Aureli
,
M.
,
Pagano
,
C.
, and
Porfiri
,
M.
,
2012
, “
Nonlinear Finite Amplitude Torsional Vibrations of Cantilevers in Viscous Fluids
,”
J. Appl. Phys.
,
111
(
12
), p.
124915
.
12.
Gesing
,
A.
,
Platz
,
D.
, and
Schmid
,
U.
,
2022
, “
Viscous Fluid–Structure Interaction of Micro-Resonators in the Beam-Plate Transition
,”
J. Appl. Phys.
,
131
(
13
), p.
134502
.
13.
Clarke
,
R.
,
Jensen
,
O.
, and
Billingham
,
J.
,
2008
, “
Three-Dimensional Elastohydrodynamics of a Thin Plate Oscillating Above a Wall
,”
Phys. Rev. E
,
78
(
5
), p.
056310
.
14.
Pozrikidis
,
C.
,
1989
, “
A Singularity Method for Unsteady Linearized Flow
,”
Phys. Fluids A
,
1
(
9
), pp.
1508
1520
.
15.
Meirovitch
,
L.
,
1967
,
Analytical Methods in Vibrations
,
MacMillan
,
London
.
16.
Ahsan
,
S. N.
, and
Aureli
,
M.
,
2018
, “
Three-Dimensional Analysis of Hydrodynamic Forces and Power Dissipation in Shape-Morphing Cantilevers Oscillating in Viscous Fluids
,”
Int. J. Mech. Sci.
,
149
, pp.
436
451
.
You do not currently have access to this content.