Abstract

This article focuses on the thermal management and temperature balancing of lithium-ion battery packs. As society transitions to relying more heavily on renewable energy, the need for energy storage rises considerably, as storage facilitates power regulation between these sources and the grid. Lithium-ion batteries are leading the market for energy storage options, but their properties are temperature sensitive, with thermal abuse resulting in shortened pack lifetime and possible safety issues. Current battery thermal management systems (BTMS) are implemented in a number of ways to ensure consistent and reliable operation. However, they are typically limited in architecture and restricted in ability to attend to temperature gradients. This work proposes a BTMS topology that permits control of the individual cooling received by a cell in a pack. First, an analysis is done using timescale separation to confirm that cell-level temperature control is capable of extending the lifetime of a pack as compared to pack-level control. The analysis is used to guide the gain tuning of a state feedback controller, which directs more cooling effort to cells of higher temperatures. Validation of the BTMS topology and control is performed through the simulation of a battery pack, with variations in total cooling power and resistance heterogeneity. The outcome of the validation studies indicates that the proposed BTMS configuration is better equipped to reduce temperature differences and extend pack life. This benefit increases as total input power increases, giving the controller more freedom to cool unhealthy cells while remaining within power constraints.

References

1.
Arteaga
,
J.
,
Zareipour
,
H.
, and
Thangadurai
,
V.
,
2017
,
Overview of Lithium-Ion Grid-Scale Energy Storage Systems
,
Springer Nature
.
2.
Li
,
K.
,
Yan
,
J.
,
Chen
,
H.
, and
Wang
,
Q.
,
2018
, “
Water Cooling Based Strategy for Lithium Ion Battery Pack Dynamic Cycling for Thermal Management System
,”
Appl. Therm. Eng.
,
132
, pp.
575
585
.
3.
Peng
,
X.
,
Ma
,
C.
,
Garg
,
A.
,
Bao
,
N.
, and
Liao
,
X.
,
2019
, “
Thermal Performance Investigation of an Air-Cooled Lithium-Ion Battery Pack Considering the Inconsistency of Battery Cells
,”
Appl. Therm. Eng.
,
153
, pp.
596
603
.
4.
Yoshida
,
T.
,
Takahashi
,
M.
,
Morikawa
,
S.
,
Ihara
,
C.
,
Katsukawa
,
H.
,
Shiratsuchi
,
T.
, and
Yamaki
,
J.
,
2006
, “
Degradation Mechanism and Life Prediction of Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
153
(
3
), pp.
576
582
.
5.
Waldmann
,
T.
,
Wilka
,
M.
,
Kasper
,
M.
,
Fleischhammer
,
M.
, and
Wohlfahrt-Mehrens
,
M.
,
2014
, “
Temperature Dependent Ageing Mechanisms in Lithium-Ion Batteries—A Post-Mortem Study
,”
J. Power Sources
,
262
, pp.
129
135
.
6.
Alipour
,
M.
,
Ziebert
,
C.
,
Conte
,
F. V.
, and
Kizilel
,
R.
,
2020
, “
A Review on Temperature-Dependent Electrochemical Properties, Aging, and Performance of Lithium-Ion Cells
,”
Batteries
,
6
(
35
), pp.
1
32
. MDPI.
7.
Zheng
,
Y.
,
Lu
,
L.
,
Han
,
X.
,
Li
,
J.
, and
Ouyang
,
M.
,
2013
, “
LiFePO4 Battery Pack Capacity Estimation for Electric Vehicles Based on Charging Cell Voltage Curve Transformation
,”
J. Power Sources
,
226
, pp.
33
41
.
8.
Gogoana
,
R.
,
Pinson
,
M. B.
,
Bazant
,
M. Z.
, and
Sarma
,
S. E.
,
2014
, “
Internal Resistance Matching for Parallel-Connected Lithium-Ion Cells and Impacts on Battery Pack Cycle Life
,”
J. Power Sources
,
252
, pp.
8
13
.
9.
Sun
,
H.
, and
Dixon
,
R.
,
2014
, “
Development of Cooling Strategy for an Air Cooled Lithium-Ion Battery Pack
,”
J. Power Sources
,
272
, pp.
404
414
.
10.
Chen
,
K.
,
Wu
,
W.
,
Yuan
,
F.
,
Chen
,
L.
, and
Wang
,
S.
,
2019
, “
Cooling Efficiency Improvement of Air-Cooled Battery Thermal Management System Through Designing the Flow Pattern
,”
Energy
,
167
, pp.
781
790
.
11.
Karimi
,
G.
, and
Li
,
X.
,
2013
, “
Thermal Management of Lithium-Ion Batteries for Electric Vehicles
,”
Int. J. Energy Res.
,
37
(
1
), pp.
13
24
.
12.
Mahamud
,
R.
, and
Park
,
C.
,
2011
, “
Reciprocating Air Flow for Li-Ion Battery Thermal Management to Improve Temperature Uniformity
,”
J. Power Sources
,
196
(
13
), pp.
5685
5696
.
13.
Qian
,
Z.
,
Li
,
Y.
, and
Rao
,
Z.
,
2016
, “
Thermal Performance of Lithium-Ion Battery Thermal Management System by Using Mini-Channel Cooling
,”
Energy Convers. Manage.
,
126
, pp.
622
631
.
14.
Song
,
Z.
,
Yang
,
N.
,
Lin
,
X.
,
Pinto Delgado
,
F.
,
Hofmann
,
H.
, and
Sun
,
J.
,
2022
, “
Progression of Cell-to-Cell Variation Within Battery Modules Under Different Cooling Structures
,”
Appl. Energy
,
312
, p.
118836
.
15.
You
,
N.
,
Ham
,
J.
,
Shin
,
D.
, and
Cho
,
H.
,
2023
, “
Performance Analysis of the Liquid Cooling System for Lithium-Ion Batteries According to Cooling Plate Parameters
,”
Batteries
,
9
(
11
), p.
538
.
16.
Lopez
,
C. F.
,
Jeevarajan
,
J. A.
, and
Mukherjee
,
P. P.
,
2016
, “
Evaluation of Combined Active and Passive Thermal Management Strategies for Lithium-Ion Batteries
,”
ASME J. Electrochem. Energy Convers. Storage
,
13
(
3
), p.
031007
.
17.
Ghaeminezhad
,
N.
,
Wang
,
Z.
, and
Ouyang
,
Q.
,
2023
, “
A Review on Lithium-Ion Battery Thermal Management System Techniques: A Control-Oriented Analysis
,”
Appl. Therm. Eng.
,
219
, p.
119497
.
18.
Guo
,
Z.
,
Xu
,
J.
,
Wang
,
X.
,
Shi
,
J.
,
Li
,
E.
, and
Mei
,
X.
,
2023
, “
Fine Thermal Control Based on Multilayer Temperature Distribution for Lithium-Ion Batteries
,”
IEEE Trans. Industr. Inform.
,
20
(
3
), pp.
4103
4114
.
19.
Garg
,
M.
,
Assistant
,
R.
,
Tanim
,
T. R.
,
Rahn
,
C. D.
,
Bryngelsson
,
H.
, and
Legnedahl
,
N.
,
2019
, “Temperature Control to Reduce Capacity Mismatch in Parallel-Connected Lithium Ion Cells, Park City, Utah.” http://asmedigitalcollection.asme.org/DSCC/proceedings-pdf/DSCC2019/59148/V001T08A006/6455312/v001t08a006-dscc2019-9151.pdf.
20.
Li
,
Y.
, and
Han
,
Y.
,
2016
, “
A New Perspective on Battery Cell Balancing: Thermal Balancing and Relative Temperature Control
,”
IEEE Energy Conversion Congress and Exposition
,
Milwaukee, WI
,
Sept. 18–22
.
21.
Altaf
,
F.
,
Johannesson
,
L.
, and
Egardt
,
B.
,
2014
, “
Simultaneous Thermal and State-of-Charge Balancing of Batteries: A Review
,”
2014 IEEE Vehicle Power and Propulsion Conference (VPPC)
, pp.
1
7
.
22.
Docimo
,
D. J.
, and
Fathy
,
H. K.
,
2018
, “
Analysis and Control of Charge and Temperature Imbalance Within a Lithium-Ion Battery Pack
,”
IEEE Trans. Control Syst. Technol.
,
27
(
4
), pp.
1622
1635
.
23.
De Castro
,
R.
,
Pereira
,
H.
,
Araujo
,
R. E.
,
Barreras
,
J. V.
, and
Pangborn
,
H. C.
,
2022
, “
qTSL: A Multilayer Control Framework for Managing Capacity, Temperature, Stress, and Losses in Hybrid Balancing Systems
,”
IEEE Trans. Control Syst. Technol.
,
30
(
3
), pp.
1228
1243
.
24.
Schimpe
,
M.
,
von Kuepach
,
M. E.
,
Naumann
,
M.
,
Hesse
,
H. C.
,
Smith
,
K.
, and
Jossen
,
A.
,
2018
, “
Comprehensive Modeling of Temperature-Dependent Degradation Mechanisms in Lithium Iron Phosphate Batteries
,”
J. Electrochem. Soc.
,
165
(
2
), pp.
A181
A193
.
25.
Wildfeuer
,
L.
,
Karger
,
A.
,
Aygül
,
D.
,
Wassiliadis
,
N.
,
Jossen
,
A.
, and
Lienkamp
,
M.
,
2023
, “
Experimental Degradation Study of a Commercial Lithium-Ion Battery
,”
J. Power Sources
,
560
, p.
232498
.
26.
Zhang
,
H.
,
Lu
,
R.
,
Zhu
,
C.
, and
Zhao
,
Y.
,
2014
, “
On-Line Measurement of Internal Resistance of Lithium Ion Battery for EV and Its Application Research
,”
Int. J. u- e-Service, Sci. Technol.
,
7
(
4
), pp.
301
310
.
27.
Guha
,
A.
, and
Patra
,
A.
,
2018
, “
State of Health Estimation of Lithium-Ion Batteries Using Capacity Fade and Internal Resistance Growth Models
,”
IEEE Trans. Transp. Electrif.
,
4
(
1
), pp.
135
146
.
28.
Mendoza
,
S.
,
Rothenberger
,
M.
,
Liu
,
J.
, and
Fathy
,
H. K.
,
2017
, “
Maximizing Parameter Identifiability of a Combined Thermal and Electrochemical Battery Model Via Periodic Current Input Optimization
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
7314
7320
.
29.
Bhundiya
,
H.
,
Hunt
,
M.
, and
Drolen
,
B.
,
2018
, “
Measurement of the Effective Radial Thermal Conductivities of 18650 and 26650 Lithium-ion Battery Cells
,” Thermal and Fluid Analysis Workshop,
NASA Jet Propulsion Laboratory
,
Galveston, TX
.
30.
Rasmussen
,
B. P.
, and
Alleyne
,
A. G.
,
2006
, “
Dynamic Modeling and Advanced Control of Air Conditioning and Refrigeration Systems
,”
Ph.D. dissertation
,
University of Illinois at Urbana-Champaign
,
Urbana, IL
.
You do not currently have access to this content.