Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This article presents an experimental validation of energy savings achieved through cooperative driving automation (CDA) measured by vehicle-in-the-loop (VIL) testing in car-following scenarios. The impacts of different CDA classes—from status sharing to prescriptive—on vehicle energy efficiency are explored. In the experiments, a plug-in hybrid electric vehicle runs on a chassis dynamometer integrated with simulation software that creates a virtual environment. Results indicate that when agreement-seeking cooperation operates with even a minimal number of vehicles, energy can be saved by up to 5% over human driving. Our findings highlight the considerable promise of CDA technologies for enhancing energy efficiency, especially fostering research on agreement-seeking cooperation.

References

1.
SAE International Information Report
, Taxonomy and Definitions for Terms Related to Cooperative Driving Automation for On-Road Motor Vehicles,
SAE
Standard J3216_202107, Revised July 2021, Issued May 2020.
2.
SAE International Technical Standard
, V2X Communications Message Set Dictionary,
SAE
Standard J2735_202211, Revised November 2022, Issued December 2006.
3.
Correa
,
A.
,
Alms
,
R.
,
Gozalvez
,
J.
,
Sepulcre
,
M.
,
Rondinone
,
M.
,
Blokpoel
,
R.
,
Lücken
,
L.
, and
Thandavarayan
,
G.
,
2019
, “
Infrastructure Support for Cooperative Maneuvers in Connected and Automated Driving
,”
2019 IEEE Intelligent Vehicles Symposium (IV)
,
Paris, France
,
June 9–12
, IEEE, pp.
20
25
.
4.
Ferrara
,
A.
,
Incremona
,
G. P.
,
Birliba
,
E.
, and
Goatin
,
P.
,
2022
, “
Multi-Scale Model-Based Hierarchical Control of Freeway Traffic Via Platoons of Connected and Automated Vehicles
,”
IEEE Open J. Intell. Transp. Syst.
,
3
, pp.
799
812
.
5.
Pooladsanj
,
M.
,
Savla
,
K.
, and
Ioannou
,
P. A.
,
2022
, “
Vehicle Following on a Ring Road Under Safety Constraints: Role of Connectivity and Coordination
,”
IEEE Trans. Intell. Vehicles
,
8
(
1
), pp.
628
638
.
6.
Wang
,
H.
,
Feng
,
Y.
,
Tian
,
Y.
,
Wang
,
Z.
,
Hu
,
J.
, and
Tomizuka
,
M.
,
2024
, “
Towards the Next Level of Vehicle Automation Through Cooperative Driving: A Roadmap From Planning and Control Perspective
,”
Trans. Intell. Vehicles
,
9
(
3
), pp.
4335
4347
.
7.
Bae
,
S.
,
Kim
,
Y.
,
Choi
,
Y.
,
Guanetti
,
J.
,
Gill
,
P.
,
Borrelli
,
F.
, and
Moura
,
S. J.
,
2022
, “
Ecological Adaptive Cruise Control of Plug-in Hybrid Electric Vehicle With Connected Infrastructure and On-Road Experiments
,”
ASME J. Dyn. Syst. Meas. Control.
,
144
(
1
), p.
011109
.
8.
Han
,
J.
,
Shen
,
D.
,
Jeong
,
J.
,
Di Russo
,
M.
,
Kim
,
N.
,
Grave
,
J. J.
,
Karbowski
,
D.
,
Rousseau
,
A.
, and
Stutenberg
,
K. M.
,
2023
, “
Energy Impact of Connecting Multiple Signalized Intersections to Energy-Efficient Driving: Simulation and Experimental Results
,”
IEEE Control Syst. Lett.
,
7
, pp.
1297
1302
.
9.
Jeong
,
J.
,
Kandaswamy
,
E.
,
Dudekula
,
A. B.
,
Han
,
J.
,
Karbowski
,
D.
, and
Naber
,
J.
,
2024
, “
Energy Savings Impact of Eco-Driving Control Based on Powertrain Characteristics in Connected and Automated Vehicles: On-Track Demonstrations
,”
SAE
Technical Paper 2024-01-2606.
10.
Joa
,
E.
,
Lee
,
H.
,
Choi
,
E. Y.
, and
Borrelli
,
F.
, “
Energy-Efficient Lane Changes Planning and Control for Connected Autonomous Vehicles on Urban Roads
,”
2023 IEEE Intelligent Vehicles Symposium (IV)
,
Anchorage, AK
,
June 4–7
, IEEE, pp.
1
6
.
11.
Al Alam
,
A.
,
Gattami
,
A.
, and
Johansson
,
K. H.
,
2010
, “
An Experimental Study on the Fuel Reduction Potential of Heavy Duty Vehicle Platooning
,”
13th International IEEE Conference on Intelligent Transportation Systems
,
Funchal, Portugal
,
Sept. 19–22
, IEEE, pp.
306
311
.
12.
Li
,
Y.
,
Chen
,
W.
,
Peeta
,
S.
, and
Wang
,
Y.
,
2019
, “
Platoon Control of Connected Multi-Vehicle Systems Under V2X Communications: Design and Experiments
,”
IEEE Trans. Intell. Transp. Syst.
,
21
(
5
), pp.
1891
1902
.
13.
Wang
,
H. M.
,
Avedisov
,
S. S.
,
Altintas
,
O.
, and
Orosz
,
G.
,
2024
, “
Intent Sharing in Cooperative Maneuvering: Theory and Experimental Evaluation
,”
IEEE Trans. Intell. Transp. Syst.
,
25
(
9
), pp.
12450
12463
.
14.
Heß
,
D.
,
Lattarulo
,
R.
,
Pérez
,
J.
,
Hesse
,
T.
, and
Köster
,
F.
,
2019
, “
Negotiation of Cooperative Maneuvers for Automated Vehicles: Experimental Results
,”
2019 IEEE Intelligent Transportation Systems Conference
,
Auckland, New Zealand
,
Oct. 27–30
, IEEE, pp.
1545
1551
.
15.
Hyeon
,
E.
,
Karbowski
,
D.
, and
Rousseau
,
A.
,
2023
, “
Potential Energy Saving by Different Cooperative Driving Automation Classes in Car-Following Scenarios
,”
2023 American Control Conference (ACC)
,
San Diego, CA
,
May 31–June 2
, pp.
1313
1318
.
16.
Hyeon
,
E.
,
Kim
,
Y.
,
Prakash
,
N.
, and
Stefanopoulou
,
A. G.
,
2019
, “
Short-Term Speed Forecasting Using Vehicle Wireless Communications
,”
2019 American Control Conference (ACC)
,
Philadelphia, PA
,
July 10–12
, pp.
736
741
.
17.
Hyeon
,
E.
,
Karbowski
,
D.
, and
Rousseau
,
A.
,
2023
, “
Decision-Making Strategy Using Multi-Agent Reinforcement Learning for Platoon Formation in Agreement-Seeking Cooperation
,”
2023 IEEE Intelligent Vehicles Symposium (IV)
,
Anchorage, AK
,
June 4–7
, IEEE, pp.
1
6
.
18.
Han
,
J.
,
Karbowski
,
D.
, and
Rousseau
,
A.
,
2022
, “
Analytical Anticipative Optimal Drivability Car-Following Model
,”
2022 American Control Conference (ACC)
,
Atlanta, GA
,
June 8–10
, IEEE, pp.
4113
4118
.
19.
Kim
,
N.
,
Karbowski
,
D.
, and
Rousseau
,
A.
,
2018
, “
A Modeling Framework for Connectivity and Automation Co-simulation
,”
SAE Int. J. Engines
,
11
(
6
), p.
1007
1022
.
20.
Jeong
,
J.
,
Kim
,
N.
,
Stutenberg
,
K.
, and
Rousseau
,
A.
,
2019
, “
Analysis and Model Validation of the Toyota Prius Prime
,”
SAE
Technical Paper 2019-01-0369.
21.
Russo
,
M. D.
,
Iliev
,
S.
,
Stutenberg
,
K. M.
,
Ku
,
J.
, and
Rask
,
E.
,
2020
, “
Experimental Evaluation of Longitudinal Control for Automated Vehicles through Vehicle-in-the-Loop Testing
,,”
SAE
Technical Paper 2020-01-0714.
You do not currently have access to this content.