Abstract

System identification can be used to determine data-driven mathematical models of dynamic processes. For nonlinear processes, model architectures that are as flexible as possible are required. One possibility is to utilize Gaussian processes (GPs) as a universal approximator with an external dynamics realization, leading to highly flexible models. Novel Laguerre and Kautz filter-based dynamics realizations in GP models are proposed. The Laguerre/Kautz pole(s) are treated as hyperparameters with the GPs’ standard hyperparameter for the squared exponential kernel with automatic relevance determination (SE-ARD) kernel. The two novel dynamics realizations in GP models are compared to different state-of-the-art dynamics realizations such as finite impulse response (FIR) or autoregressive with exogenous input (ARX). The big data case is handled via support points. Using Laguerre and Kautz regressor spaces allows both the dimensionality of the regressor space to be kept small and achieve superior performance. This is demonstrated through numerical examples and measured benchmark data of a Wiener–Hammerstein process.

References

1.
Nelles
,
O.
,
2021
,
Nonlinear System Identification From Classical Approaches to Neural Networks, Fuzzy Systems, and Gaussian Processes
, 2nd ed.,
Springer Nature Switzerland AG
,
Cham, Switzerland
.
2.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2005
,
Gaussian Processes for Machine Learning
,
The MIT Press
,
London, UK
.
3.
Perne
,
M.
,
Kocijan
,
J.
,
Božnar
,
M. Z.
,
Grašic
,
B.
, and
Mlakar
,
P.
,
2023
, “
Hybrid Forecasting of Wind for Air Pollution Dispersion Over Complex Terrain
,”
J. Environ. Inf.
,
41
(
2
), pp.
88
103
.
4.
Mazzoni
,
A. V. N.
, and
Villani
,
L. G. G.
,
2024
, “
On the Use of GP-NARX Model for Damage Detection in Intrinsically Nonlinear Systems
,”
J. Braz. Soc. Mech. Sci. Eng.
,
46
(
2
), pp.
1
15
.
5.
Kavrakov
,
I.
,
McRobie
,
A.
, and
Morgenthal
,
G.
,
2022
, “
Data-Driven Aerodynamic Analysis of Structures Using Gaussian Processes
,”
J. Wind Eng. Ind. Aerodyn.
,
222
, p.
104911
.
6.
Kocijan
,
J.
,
2019
,
Modelling and Control of Dynamic Systems Using Gaussian Process Models
,
Springer International Publishing
,
Cham, Switzerland
.
7.
Dolenc
,
B.
,
Stepancic
,
M.
,
Juricic
,
D.
,
Kocijan
,
J.
,
Marra
,
D.
, and
Pianese
,
C.
,
2016
, “
Accounting for Modelling Errors in Model-Based Diagnosis by Using Gaussian Process Models
,”
3rd Conference on Control and Fault-Tolerant Systems (SysTol)
,
Barcelona, Spain
,
Sept. 7–9
, IEEE.
8.
Jing
,
L.
,
Ng
,
M. K.
, and
Huang
,
J. Z.
,
2007
, “
An Entropy Weighting K-Means Algorithm for Subspace Clustering of High-Dimensional Sparse Data
,”
IEEE Trans. Knowl. Data Eng.
,
19
(
8
), pp.
1026
1041
.
9.
de Oliveira Teloli
,
R.
,
Villani
,
L. G.
,
da Silva
,
S.
, and
Todd
,
M. D.
,
2021
, “
On the Use of the GP-NARX Model for Predicting Hysteresis Effects of Bolted Joint Structures
,”
Mech. Syst. Signal Process.
,
159
, p.
107751
.
10.
Krivec
,
T.
,
Papa
,
G.
, and
Kocijan
,
J.
,
2021
, “
Simulation of Variational Gaussian Process NARX Models With GPGPU
,”
ISA Trans.
,
109
, pp.
141
151
.
11.
Worden
,
K.
,
Surace
,
C.
, and
Becker
,
W.
,
2017
, “
Uncertainty Bounds on Higher-Order FRFS From Gaussian Process NARX Models
,”
Procedia Eng.
,
199
, pp.
1994
2000
.
12.
Wahlberg
,
B.
,
1991
, “
System Identification Using Laguerre Models
,”
IEEE Trans. Autom. Contr.
,
36
(
5
), pp.
551
562
.
13.
Wahlberg
,
B.
,
1994
, “
System Identification Using Kautz Models”
,”
IEEE Trans. Autom. Contr.
,
39
(
6
), pp.
1276
1282
.
14.
Illg
,
C.
,
Kösters
,
T.
, and
Nelles
,
O.
,
In press
, “
On the Choice of the Scheduling Variables for Dynamic Local Model Networks with Local Regularized FIR Models
,”
2024 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
,
Yokohama, Japan
,
June 30–July 5
.
15.
Heinz
,
T. O.
, and
Nelles
,
O.
,
2016
, “
Efficient Pole Optimization of Nonlinear Laguerre Filter Models
,”
2016 IEEE Symposium Series on Computational Intelligence (SSCI)
,
Athens, Greece
,
Dec. 6–9
, IEEE.
16.
Van den Hof
,
P. M.
,
Heuberger
,
P. S. C.
, and
Bokor
,
J.
,
1994
, “
System Identification With Generalized Orthonormal Basis Functions
,”
33rd IEEE Conference on Decision and Control
,
Lake Buena Vista, FL
,
Dec. 14–16
, IEEE.
17.
Ljung
,
L.
,
1999
,
System Identification: Theory for the User
,
Prentice Hall
,
Philadelphia, PA
.
18.
Quinonero Candela
,
J.
, and
Rasmussen
,
C.
,
2005
, “
A Unifying View of Sparse Approximate Gaussian Process Regression
,”
J. Mach. Learn. Res.
,
6
(
65
), pp.
1939
1959
.
19.
Snelson
,
E.
, and
Ghahramani
,
Z.
,
2005
, “
Sparse Gaussian Processes Using Pseudo-inputs
,”
Advances in Neural Information Processing Systems 18
,
Vancouver, Canada
,
Dec. 5–8
, IEEE.
20.
Ebert
,
T.
,
Fischer
,
T.
,
Belz
,
J.
,
Heinz
,
T. O.
,
Kampmann
,
G.
, and
Nelles
,
O.
,
2015
, “
Extended Deterministic Local Search Algorithm for Maximin Latin Hypercube Designs
,”
2015 IEEE Symposium Series on Computational Intelligence
,
Cape Town, South Africa
,
Dec. 7–10
, IEEE.
21.
Schoukens
,
J.
,
Suykens
,
J.
, and
Ljung
,
L.
,
2009
, “
Wiener–Hammerstein Benchmark
,”
15th IFAC Symposium on System Identification (SYSID 2009)
,,
St. Malo, France
,
July 6–8
.
22.
Nelles
,
O.
, and
Isermann
,
R.
,
1995
, “
Identification of Nonlinear Dynamic Systems Classical Methods Versus Radial Basis Function Networks
,”
Proceedings of 1995 American Control Conference - ACC'95
,
Seattle, WA
,
June 21–23
, Vol. 5, pp.
3786
3790
.
You do not currently have access to this content.