In multi-axis CNC machining of sculptured surfaces, a linear interpolation technique has been used to generate the command signals for positions along the straight line segments that connect each consecutive data point. Due to the rotational movements superimposed on the translational movements in multi-axis CNC machining, the actual cutter contact (CC) point moves along a space curve path, while the linear interpolation technique generates positions along the straight line path. The nonlinear curve segments deviate from the linearly interpolated line segments resulting in nonlinearity errors, which in turn, commonly cause difficulties to ensure high precision machining. An interpolator design technique for solving the nonlinearity errors problem in multi-axis CNC machining is presented. A combined 3D linear and circular interpolation principle is developed on the basis of the 3D linear and circular interpolation principles. The new designed interpolator is capable of driving the rotation movement pivot along a predesigned 3D curve path, so that the CC point motion trajectory is via a straight line connecting machining data points. Therefore, the proposed interpolator design technique on-line eliminates nonlinearity errors, and provides a solution to the nonlinearity errors problem for multi-axis CNC machining.

1.
Faux, I. D., and Pratt, M. J., 1979, Computational Geometry for Design and Manufacture, Halsted Press, a division of John Wiley & Sons.
2.
Takeuchi
,
Y.
,
Shimizh
,
H.
,
Idemura
,
T.
,
Watnabe
,
T.
, and
Ito
,
T.
,
1990
, “
5-axis Controlled Machining Based on Solid Models
,”
Journal of the Japan Society for Precision Engineering
,
56
, 2063, pp.
111
116
.
3.
Cho
,
H. D.
,
Jun
,
Y. T.
, and
Yang
,
M. Y.
,
1993
, “
Five-axis Milling for Effective Machining of Sculptured Surfaces
,”
Int. J. Prod. Res.
,
31
, No.
11
, pp.
2559
2573
.
4.
IntelliPost, 1996, Automation Intelligence Generalized Postprocessor Reference Manual.
5.
Vanguard Custom Postprocessor Reference Manual, 1996.
6.
Liang, H., Hong, H., and Svoboda, J., 2000, “A Cutter Orientation Modification Method for the Reduction of Non-linearity Errors in Five-axis CNC Machining,” International Journal of Machining Science and Technology, submitted.
7.
Sata
,
T.
,
Kimura
,
F.
,
Okada
,
N.
, and
Hosaka
,
M.
,
1981
, “
A New Method of NC Interpolation for Machining the Sculptured Surface
,”
CIRP Ann.
,
30/1
, pp.
369
372
.
8.
Stadelmann
,
R.
,
1989
, “
Computation of Nominal Path Values to Generate Various Special Curves for Machine
,”
CIRP Ann.
,
38/1
, pp.
373
376
.
9.
Makino
,
H.
,
1988
, “
Clothoidal Interpolation-A New Tool for High-speed Continuous Path Control
,”
CIRP Ann.
,
37/1
, pp.
25
28
.
10.
Papaioannou
,
S. G.
, and
Kiritsis
,
D.
,
1988
, “
Computer-aided Manufacture of High Precision Cams
,”
ASME J. Ind.
,
110
, pp.
352
358
.
11.
Chou
,
J. J.
, and
Yang
,
D. C. H.
,
1991
, “
Command Generation for Three-axis CNC Machining
,”
ASME J. Ind.
,
113
, p.
305
305
.
12.
Chou
,
J. J.
, and
Yang
,
D. C. H.
,
1992
, “
On the Generation of Coordinated Motion of Five-axis CNC/CMM Machines
,”
ASME J. Ind.
,
114
, p.
15
15
.
13.
Huang, J. T., and Yang, D. C. H., 1992, “A Generalized Interpolator for Command Generation of Parametric Curves in Computer-Controlled Machines,” Jap./USA Symp. Flexible Automation, Vol. 1, pp. 393–399.
14.
Renner, G., and Pochop, V., 1981, “A New Method for Local Smooth Interpolation,” Proc. Eurographics.
15.
Renner
,
G.
,
1982
, “
A Method of Shape Description for Mechanical Engineering Practice
,”
Comput. Industry
,
3
, pp.
137
142
.
16.
Wang, F. C., and Yang, D. C. H., 1993, “Nearly Arc-length Parameterized Quintic-spline Interpolation for Precision Machining,” Comput.-Aided Des., 25, No. 5.
17.
Kiritsis, D., 1994, “High Precision Interpolation Algorithm for 3D Parametric Curve Generation,” Comput.-Aided Des., 26, No. 11.
18.
Koren
,
Y.
,
1997
, “
Control of Machine Tools
,”
ASME J. Manuf. Sci. Eng.
,
119
, pp.
749
755
.
19.
Shpitalni, M., Koren, Y., and Lo, C. C., 1994, “Realtime Curve Interpolators,” Comput.-Aided Des., 26, No. 11.
20.
Lin, R. S., and Koren, Y., 1994, “Real-time Five-axis Interpolator for Machining Ruled Surfaces,” ASME Winter Annual Meeting, Nov., DSC 55-2, pp. 951–960.
21.
Koren
,
Y.
,
1995
, “
Five-axis Surface Interpolators
,”
CIRP Ann.
,
44/1
, pp.
379
383
.
22.
Lo
,
C. C.
,
1998
, “
A New Approach to CNC Tool Path Generation
,”
Comput.-Aided Des.
,
30
, No.
8
, pp.
649
655
.
23.
Lo
,
C. C.
, and
Hsiao
,
C. Y.
,
1998
, “
CNC Machine Tool Interpolator with Path Compensation for Repeated Contour Machining
,”
Comput.-Aided Des.
,
30
, No.
1
, pp.
55
62
.
24.
Wang, Y. Z., 1995, NC Technology of Machine Tools (in Chinese), Harebin Polytechnic University Press.
25.
Koren, Y., 1983, Computer Control of Manufacturing System, McGraw–Hill, Inc., N. Y.
26.
Bi, C. N., and Ding, N. J., 1993, Modern Numerical Controlled Machine Tools, Mechanical Engineering Press (in Chinese).
27.
Liang, H., 1999, “Minimum Error Tool Path Generation Method and An Interpolator Design Technique for Ultra-precision Multi-axis CNC Machining”, Ph.D. Thesis, Concordia University, Montreal, Quebec, Canada.
You do not currently have access to this content.