This paper establishes the equivalence between the solution to a linear Chebyshev approximation problem and that of a weighted least squares (WLS) problem with the weighting parameters being appropriately defined. On this basis, we present an algorithm for form error evaluation of geometric features. The algorithm is implemented as an iterative procedure. At each iteration, a WLS problem is solved and the weighting parameters are updated. The proposed algorithm is of general-purpose, it can be used to evaluate the exact minimum zone error of various geometric features including flatness, circularity, sphericity, cylindericity and spatial straightness. Numerical examples are presented to show the effectiveness and efficiency of the algorithm.

1.
Shunmugam
,
M. S.
,
1986
, “
On Assessment of Geometric Errors
,”
Int. J. Prod. Res.
,
24
(
2
), pp.
413
425
.
2.
ANSI Standard Y14.5. Dimensioning and Tolerancing. New York: The American Society of Mechanical Engineers, 1982.
3.
Technical Drawings-Geometrical Tolerancing. ISO/R1101, 1983-12-01.
4.
Murthy
,
T. S. R.
, and
Abdin
,
S. Z.
,
1980
, “
Minimum Zone Evaluation of Surfaces
,”
Int. J. Mach. Tool Des. Res.
,
20
, pp.
123
136
.
5.
Fukuda, M., and Shimokohbe, A., 1984, “Algorithms for Form Error Evaluation-Methods of Minimum Zone and the Least Squares,” Proceedings of the International Symposium on Metrology and Quality Control in Production, pp. 197–202.
6.
Shunmugam
,
M. S.
,
1991
, “
Criteria for Computer-Aided Form Evaluation
,”
ASME J. Eng. Ind.
,
113
, pp.
233
238
.
7.
Carr
,
K.
, and
Ferreira
,
P.
,
1995
, “
Verification of Form Tolerance-Part I: Basic Issues, Flatness and Straightness
,”
Precis. Eng.
,
17
(
2
), pp.
131
143
.
8.
Cheraghi
,
S. H.
,
Lim
,
H. S.
, and
Motavalli
,
S.
,
1996
, “
Straightness and Flatness Tolerance Evaluation: An Optimization Approach
,”
Precis. Eng.
,
18
(
1
), pp.
30
37
.
9.
Wang
,
Y.
,
1992
, “
Minimum Zone Evaluation of Form Tolerances
,”
Manufacturing Review
,
5
(
3
), pp.
213
220
.
10.
Kanada
,
T.
, and
Suzuki
,
S.
,
1993
, “
Evaluation of Minimum Zone Flatness by Means of Non-linear Optimization Technique and Its Verification
,”
Precis. Eng.
,
15
(
2
), pp.
93
99
.
11.
Chetwynd
,
D. G.
,
1985
, “
Application of Linear Programming to Engineering Metrology
,”
Proc. Inst. Mech. Eng.
,
199
(
B2
), pp.
93
100
.
12.
Huang
,
S. T.
,
Fan
,
K. C.
, and
Wu
,
J. H.
,
1993
, “
A New Minimum Zone Method for Evaluating Flatness Errors
,”
Precis. Eng.
,
15
(
1
), pp.
25
32
.
13.
Lai
,
H.-Y.
,
Jywe
,
W.-Y.
,
Chen
,
C.-K.
, and
Liu
,
C.-H.
,
2000
, “
Precision Modeling of Form Errors for Cylindericity Evaluation Using Genetic Algorithms
,”
Precis. Eng.
,
24
, pp.
310
319
.
14.
Zhu
,
L.-M.
, and
Ding
,
H.
,
2003
, “
Application of Kinematic Geometry to Computational Metrology: Distance Function Based Hierarchical Algorithms for Cylindericity Evaluation
,”
Int. J. Mach. Tools Manuf.
,
43
(
2
), pp.
203
215
.
15.
Traband
,
M. T.
,
Joshi
,
S.
,
Wysk
,
R. A.
, and
Cavalier
,
T. M.
,
1989
, “
Evaluation of Straightness and Flatness Tolerances Using the Minimum Zone
,”
Manufacturing Review
,
2
(
3
), pp.
189
195
.
16.
Samuel
,
G. L.
, and
Shunmugam
,
M. S.
,
1999
, “
Evaluation of Straightness and Flatness Using Computational Geometric Techniques
,”
Comput.-Aided Des.
,
31
, pp.
829
843
.
17.
Lee
,
M. K.
,
1997
, “
A New Convex-hull Based Approach to Evaluating Flatness Tolerance
,”
Comput.-Aided Des.
,
29
(
12
), pp.
861
868
.
18.
Zhu
,
X. Y.
, and
Ding
,
H.
,
2002
, “
Flatness Tolerance Evaluation: An Approximate Minimum Zone Solution
,”
Comput.-Aided Des.
,
34
, pp.
655
664
.
19.
Huang
,
J.
,
1999
, “
An Exact Solution for the Roundness Evaluation Problems
,”
Precis. Eng.
,
23
, pp.
2
8
.
20.
Huang
,
J.
,
1999
, “
An Exact Minimum Zone Solution for Sphericity Evaluation
,”
Comput.-Aided Des.
,
31
, pp.
845
853
.
21.
Samuel
,
G. L.
, and
Shunmugam
,
M. S.
,
2000
, “
Evaluation of Circularity Form Coordinate and Form Data Using Computational Geometric Techniques
,”
Precis. Eng.
,
24
, pp.
251
263
.
22.
Huang
,
J.
,
1999
, “
An Exact Minimum Zone Solution for Three-dimensional Straightness Evaluation Problems
,”
Precis. Eng.
,
23
, pp.
204
208
.
23.
Liu, J., and Wang, X. M., 1996, Saddle Point Programming and Geometric Error Evaluation, The Press of Dalian University of Technology.
24.
Fan
,
K.-C.
, and
Lee
,
J.-C.
,
1999
, “
Analysis of Minimum Zone Sphericity Error Using Minimum Potential Energy Theory
,”
Precis. Eng.
,
23
, pp.
65
72
.
25.
Zhang
,
Q.
,
Fan
,
K. C.
, and
Li
,
Z.
,
1999
, “
Evaluation Method for Spatial Straightness Errors Based on Minimum Zone Condition
,”
Precis. Eng.
,
23
, pp.
264
272
.
26.
Murray, R. M., Li, Z. X., and Sastry, S. S., 1994, A Mathematical Introduction to Robotic Manipulation, CRC Press.
You do not currently have access to this content.