Abstract
This paper reports an integrated approach for jointly solving the process selection, machining parameter selection, and tolerance design problems to avoid inconsistent and infeasible decisions. The integrated problem is formulated as a bicriterion model to handle both tangible and intangible costs. The model is solved using a modified Chebyshev goal programming method to achieve a preferred compromise between the two conflicting and noncommensurable criteria. Examples are provided to illustrate the application of the model and the solution procedure. The results show that the decisions on process selection, machining parameter selections, and tolerance design can be made simultaneously with the model.
Issue Section:
Technical Papers
1.
Petropoulos
, P. G.
, 1973, “Optimal Selection of Machining Rate Variables by Geometric Programming
,” Int. J. Prod. Res.
0020-7543, 11
, pp. 305
–314
.2.
Lambert
B. K.
, and Walveker
, A. G.
, 1978, “Optimization of Multi-Pass Machining Operations
,” Int. J. Prod. Res.
0020-7543, 16
, pp. 259
–265
.3.
Ermer
, D.
, and Kromodihardjo
, S.
, 1981, “Optimization of Multipass Turning with Constraints
,” ASME J. Eng. Ind.
0022-0817, 103
, pp. 462
–468
.4.
Tan
, F. P.
, and Creese
, R. C.
, 1995, “A Generalized Multi-Pass Machining Model for Machining Parameter Selection in Turning
,” Int. J. Prod. Res.
0020-7543, 33
(5
), pp. 1467
–1487
.5.
Kee
, P.
, 1996, “Development of Constrained Optimization Analyses and Strategies for Multi-Pass Rough Turning Operations
,” Int. J. Mach. Tools Manuf.
0890-6955, 36
(1
), pp. 115
–127
.6.
Gupta
, R.
, Batra
, J. L.
, and Lal
, G. K.
, 1995, “Determination of Optimal Subdivision of Depth of Cut in Multipass Turning with Constraints
,” Int. J. Prod. Res.
0020-7543, 33
(9
), pp. 2555
–2565
.7.
Capello
, E.
, and Semeraro
, Q.
, 2002, “Process Parameters and Residual Stresses in Cylindrical Grinding
,” ASME J. Manuf. Sci. Eng.
1087-1357, 124
(3
), pp. 615
–623
.8.
Xiao
, G.
, and Malkin
, S.
, 1996, “On-line Optimization for Internal Plunge Grinding
,” CIRP Ann.
0007-8506, 45
, pp. 351
–356
.9.
Shunmugam
, M. S.
, Reddy
, S. V.
, and Narendran
, T. T.
, 2000, “Optimal Selection of Parameters in Multi-Tool Drilling
,” J. Mater. Process. Technol.
0924-0136, 103
(2
), pp. 318
–323
.10.
Kusiak
, A.
, and Feng
, C. X.
, 1996, “Robust Tolerance Design for Quality
,” ASME J. Eng. Ind.
0022-0817, 118
(1
), pp. 166
–169
.11.
Feng
, C. X.
, and Kusiak
, A.
, 1997, “Robust Tolerance Design with the Integer Programming Approach
,” ASME J. Manuf. Sci. Eng.
1087-1357, 119
(4A
), pp. 603
–610
.12.
Feng
, C. X.
, and Kusiak
, A.
, 2000, “Robust Tolerance Design with the Design of Experiments Approach
,” ASME J. Manuf. Sci. Eng.
1087-1357, 122
(3
), pp. 520
–528
.13.
Anwarul
, M.
, and Liu
, M. C.
, 1995, “Optimal Manufacturing Tolerance: The Modified Taguchi Approach
,” in Proceedings of the 4th Ind. Eng. Res. Conf.
, pp. 379
–383
.14.
Choi
, H.-G. R.
, Park
, M.-H.
, and Salisbury
, E.
, 2000, “Optimal Tolerance Allocation with Loss Function
,” ASME J. Manuf. Sci. Eng.
1087-1357, 122
, pp. 273
–281
.15.
Li
, M. H.
, 2000, “Quality Loss Function Based Manufacturing Process Setting Models for Unbalanced Tolerance Design
,” Int. J. Adv. Manuf. Technol.
0268-3768, 16
(1
), pp. 39
–45
.16.
Li
, M. H.
, 2002, “Unbalanced Tolerance Design and Manufacturing Setting with Asymmetrical Linear Loss Function
,” Int. J. Adv. Manuf. Technol.
0268-3768, 20
(5
), pp. 334
–340
.17.
Ngoi
, B. K. A.
, and Ong
, C. T.
, 1993, “A Complete Tolerance Charting System
,” Int. J. Prod. Res.
0020-7543, 31
(2
), pp. 453
–469
.18.
Ngoi
, B. K. A.
, and Fang
, S. L.
, 1993, “Computer Aided Tolerance Charting
,” Int. J. Prod. Res.
0020-7543, 32
, pp. 1939
–1954
.19.
Ji
, P.
, 1993, “A Linear Programming Model for Tolerance Assignment in a Tolerance Chart
,” Int. J. Prod. Res.
0020-7543, 31
(3
), pp. 739
–751
.20.
Jeang
, A.
, 1995, “Economic Tolerance Design for Quality
,” Qual. Reliab. Eng. Int
0748-8017, 11
(2
), pp. 113
–121
.21.
Jeang
, A.
, 2002, “Optimal Parameter and Tolerance Design with a Complete Inspection Plan
,” Int. J. Adv. Manuf. Technol.
0268-3768, 20
(2
), pp. 121
–127
.22.
Zhang
, H.-C.
, Huang
, S. H.
, and Mei
, J.
, 1996, “Operational Dimensioning and Tolerancing in Process Planning
,” Int. J. Prod. Res.
0020-7543, 34
(7
), pp. 1841
–1858
.23.
Zhang
, H.-C.
, and Lin
, E.
, 1999, “A Hybrid-Graph Approach for Automated Setup Planning in CAPP
,” Rob. Comput.-Integr. Manufact.
0736-5845, 15
, pp. 89
–100
.24.
Jeang
, A.
, and Chang
, C.-L.
, 2002, “Concurrent Optimization of Parameter and Tolerance Design via Computer Simulation and Statistical Method
,” Int. J. Adv. Manuf. Technol.
0268-3768, 19
, pp. 432
–441
.25.
Zhang
, G.
, 1997, “Simultaneous Tolerancing for Design and Manufacturing
,” Advanced Tolerancing Techniques
, H. C.
Zhang
, ed., Wiley
, New York, pp. 207
–231
.26.
Huang
, Q.
, and Shi
, J.
, 2003, “Simultaneous Tolerance Synthesis through Variation Propagation Modeling of Multistage Manufacturing Processes
,” NAMRI/SME Transactions
, 31
, pp. 515
–522
.27.
Ermer
, D. S.
, 1997, “A Century of Optimizing Machining Operations
,” ASME J. Manuf. Sci. Eng.
1087-1357, 119
, pp. 817
–822
.28.
Kumar
, S.
, and Raman
, S.
, 1992, “Computer-aided Tolerancing: The Past, the Present and the Future
,” J. Design Manuf. Autom.
1532-0375 2
, pp. 29
–41
.29.
Hong
, Y. S.
, and Chang
, T.-C.
, 2002, “A Comprehensive Review of Tolerancing Research
,” Int. J. Prod. Res.
0020-7543, 40
(11
), pp. 2425
–2459
.30.
Zhang
, C.
, Wang
, H. P.
, and Li
, J. K.
, 1992, “Simultaneous Optimization of Design and Manufacturing-Tolerances with Process (Machine) Selection
,” CIRP Ann.
0007-8506, 41
(1
), pp. 569
–572
.31.
Zhang
, C.
, and Wang
, H. P.
, 1993, “Optimal Process Sequence Selection and Manufacturing Tolerance Allocation
,” J. Design Manuf. Autom.
1532-0375, 3
, pp. 135
–146
.32.
Yeo
, S. H.
, Hgoi
, B. K. A.
, and Chen
, H.
, 1996, “A Cost-Tolerance Model for Process Sequence Optimization
,” Int. J. Adv. Manuf. Technol.
0268-3768, 12
, pp. 423
–431
.33.
Ming
, X. G.
, and Mak
, K. L.
, 2001, “Intelligent Approaches to Tolerance Allocation and Manufacturing Operations Selection in Process Planning
,” J. Mater. Process. Technol.
0924-0136, 1117
, pp. 75
–83
.34.
Spotts
, M. F.
, 1973, “Allocation of Tolerances to Minimize Cost of Assembly
,” ASME J. Eng. Ind.
0022-0817, 93
, pp. 762
–764
.35.
Chase
, K. H.
, Greenwood
, W. H.
, Loosli
, B. G.
, and Haugland
, L. F.
, 1990, “Least Cost Tolerance Allocation for Mechanical Assemblies with Automated Process Selection
,” Manuf. Rev.
0896-1611, 3
(1
), pp. 49
–59
.36.
Wu
, Z.
, Elmaraghy
, W. H.
, and Elmaraghy
, H. A.
, 1988, “Evaluation of Cost-Tolerance Algorithms for Design Tolerance Analysis and Synthesis
,” Manuf. Rev.
0896-1611, 1
, pp. 168
–179
.37.
Dieter
, G. E.
, 1983, Engineering Design: A Materials and Processing Approach
, McGraw-Hill
, New York.38.
Shirai
, E.
, 1982, The Metal Cutting and Grinding Processes
(in Chinese, translated by X. Gao, and D. Liu), Machinery Industry Press
, Beijing.39.
Meng
, S.
, ed., 1996, Handbook of Metal Cutting Processes
, Machinery Industry Press
, Beijing.40.
Taguchi
, G.
, Elsayed
, E. A.
, and Hsiang
, T.
, 1989, Quality Engineering in Production Systems
, McGraw-Hill
, New York.41.
Malkin
, S.
, 1989, Grinding Technology: Theory and Application of Machining with Abrasives
, Ellis Hzrwood Limited
, Chichester.42.
Zhao
, R.
, 1992, Handbook for Machinists
, Shanghai Science and Technology Press
, Shanghai.43.
Zhang
, C.
, and Wang
, H. P.
, 1993, “Integrated Tolerance Optimization with Simulated Annealing
,” Int. J. Adv. Manuf. Technol.
0268-3768, 8
, pp. 167
–174
.44.
Ignizio
, J. P.
, and Cavalier
, T. M.
, 1994, Linear Programming
, Prentice-Hall
, New Jersey.45.
Zimmermann
, H. J.
, 1978, “Fuzzy Programming and Linear Programming with Several Objective Functions
,” Fuzzy Sets Syst.
0165-0114, 1
, pp. 45
–55
.46.
Diplaris
, S. C.
, and Sfantsikopoulos
, M. M.
, 2000, “Cost-Tolerance Function: A New Approach for Cost Optimum Machining Accuracy
,” Int. J. Adv. Manuf. Technol.
0268-3768, 16
, pp. 32
–38
.47.
Feyzan
, A.
, and Zulal
, G.
, 2001, “An Application of Fuzzy Goal Programming to a Multiobjective Project Network Problem
,” Fuzzy Sets Syst.
0165-0114, 119
, pp. 49
–58
.48.
Masatoshi
, S.
, and Ryo
, Kubota
, 2000, “Fuzzy Programming for Multiobjective Job Shop Scheduling with Fuzzy Processing Time and Fuzzy Duedate through Genetic Algorithms
,” Eur. J. Oper. Res.
0377-2217, 120
, pp. 393
–407
.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.