This paper presents a method for geometric machinability analysis. The implementation of the strategy determines the machinability of a part being processed using a plurality of 3-axis machining operations about a single axis of rotation for setup orientations. Slice file geometry from a stereolithography model is used to map machinable ranges to each of the line segments comprising the polygonal chains of each slice. The slices are taken orthogonal to the axis of rotation, hence, both two- and three-dimensional (2D and 3D) machinability analysis is calculated for perpendicular and oblique tool orientations, respectively. This machinability approach expands upon earlier work on 2D visibility analysis for the rapid manufacturing and prototyping of components using CNC machining.

1.
Suh
,
S. H.
, and
Lee
,
J. J.
, 1998, “
Five-Axis Part Machining With Three-Axis CNC Machine and Indexing Table
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
(
1
), pp.
120
128
.
2.
Suh
,
S. H.
,
Lee
,
J. J.
, and
Kim
,
S. K.
, 1998, “
Multiaxis Machining With Additional Axis NC System: Theory and Development
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
14
(
12
), pp.
865
875
.
3.
Frank
,
M. C.
,
Wysk
,
R. A.
, and
Joshi
,
S. B.
, 2004, “
Rapid Planning for CNC Machining—A New Approach to Rapid Prototyping
,”
J. Manuf. Syst.
0278-6125,
23
(
3
), pp.
242
255
.
4.
Vickers
,
G. W.
, and
Quan
,
K. W.
, 1989, “
Ball-Mills Versus End-Mills for Curved Surface Machining
,”
ASME J. Eng. Ind.
0022-0817,
111
, pp.
22
26
.
5.
Ip
,
W. L. R.
, and
Loftus
,
M.
, 1993, “
The Application of An Inclined End Mill Machining Strategy on 3-Axis Machining Centers
,”
Int. J. Mach. Tools Manuf.
0890-6955,
33
(
2
), pp.
115
133
.
6.
Su
,
C. J.
, and
Mukerjee
,
A.
, 1991, “
Automated Machinability Checking for CAD/CAM
,”
IEEE Trans. Rob. Autom.
1042-296X,
7
(
5
), pp.
691
699
.
7.
Chen
,
L. L.
, and
Woo
,
T. C.
, 1992, “
Computational Geometry on the Sphere With Application to Automated Machining
,”
J. Mech. Des.
1050-0472,
114
, pp.
288
295
.
8.
Tang
,
K.
,
Woo
,
T.
, and
Gan
,
J.
, 1992, “
Maximum Intersection of Spherical Polygons and Workpiece Orientation for 4- and 5-Axis Machining
,”
J. Mech. Des.
1050-0472,
114
, pp.
477
485
.
9.
Gan
,
J. G.
,
Woo
,
T. C.
, and
Tang
,
K.
, 1994, “
Spherical Maps: Their Construction, Properties, and Approximation
,”
J. Mech. Des.
1050-0472,
116
, pp.
357
363
.
10.
Chen
,
L. L.
,
Chou
,
S. Y.
, and
Woo
,
T. C.
, 1993, “
Separating and Intersecting Spherical Polygons: Computing Machinability on Three-, Four-, and Five-Axis Numerically Controlled Machines
,”
ACM Trans. Graphics
0730-0301,
12
(
4
), pp.
305
326
.
11.
Yang
,
W.
,
Ding
,
H.
, and
Xiong
,
Y.
, 1999, “
Manufacturability Analysis for A Sculpture Surface Using Visibility Cone Computation
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
15
(
5
), pp.
317
321
.
12.
Yin
,
Z. P.
,
Ding
,
H.
, and
Xiong
,
Y. L.
, 2000, “
Visibility Theory and Algorithms With Application to Manufacturing Processes
,”
Int. J. Prod. Res.
0020-7543,
38
(
13
), pp.
2891
2909
.
13.
Gan
,
J. G.
, 1990, “
Spherical Algorithms for Setup Orientations of Workpiece With Sulptured Surfaces
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
14.
Suh
,
S. H.
, and
Kang
,
J. K.
, 1995, “
Process Planning for Multi-axis NC Machining of Free Surfaces
,”
Int. J. Prod. Res.
0020-7543,
33
(
10
), pp.
2723
2738
.
15.
Dhaliwal
,
S.
,
Gupta
,
S. K.
,
Huang
,
J.
, and
Priyadarshi
,
A.
, 2003, “
Algorithms for Computing Global Accessibility Cones
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
3
(
3
), pp.
200
209
.
16.
Balasubramaniam
,
M.
,
Laxmiprasad
,
P.
,
Sarma
,
S.
, and
Shaikh
,
Z.
, 2000, “
Generating 5-Axis NC Roughing Paths Directly From A Tessellated Representation
,”
Comput.-Aided Des.
0010-4485,
32
(
4
), pp.
261
277
.
17.
Frank
,
M. C.
,
Wysk
,
R. A.
, and
Joshi
,
S. B.
, 2005, “
Determining Setup Orientations From the Visibility of Slice Geometry for Rapid CNC Machining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
228
238
.
18.
Haghpassand
,
K.
, and
Oliver
,
J. H.
, 1995, “
Computational Geometry for Optimal Workpiece Orientation
,”
J. Mech. Des.
1050-0472,
117
(
2A
), pp.
329
335
.
19.
Radzevich
,
S. P.
, and
Goodman
,
E. D.
, 2002, “
Computation of Optimal Workpiece Orientation for Multi-Axis NC Machining of Sculptured Part Surfaces
,”
J. Mech. Des.
1050-0472,
124
(
2
), pp.
201
212
.
20.
Balasubramaniam
,
M.
,
Sarma
,
S. E.
, and
Marciniak
,
K.
, 2003, “
Collision-Free Finishing Toolpaths From Visibility Data
,”
Comput.-Aided Des.
0010-4485,
35
(
4
), pp.
359
374
.
21.
Regli
,
W. C.
, 1995, “
Geometric Algorithms for the Recognition of Features From Solid Models
,” Ph.D. thesis, The University of Maryland, College Park, MD.
22.
Regli
,
W. C.
,
Gupta
,
S. K.
, and
Nau
,
D. S.
, 1995, “
Extracting Alternative Machining Features: An Algorithmic Approach
,”
Res. Eng. Des.
0934-9839,
7
(
3
), pp.
173
192
.
23.
Gupta
,
S. K.
, and
Nau
,
D. S.
, 1995, “
Systematic Approach to Analyzing the Manufacturability of Machined Parts
,”
Comput.-Aided Des.
0010-4485,
27
(
5
), pp.
323
342
.
24.
Gupta
,
S. K.
,
Regli
,
W. C.
,
Das
,
D.
, and
Nau
,
D. S.
, 1997, “
Automated Manufacturability Analysis: A Survey
,”
Res. Eng. Des.
0934-9839,
9
(
3
), pp.
168
190
.
25.
Shen
,
Y.
, and
Shah
,
J. J.
, 1998, “
Recognition of Machining Features Based on HSPCE Decomposition, Feature Composition, and Process Centered Classification
,”
J. Mech. Des.
1050-0472,
120
(
4
), pp.
668
677
.
26.
Gaines
,
D. M.
,
Castano
,
F.
, and
Hayes
,
C. C.
, 1999, “
MEDIATOR: A Resource Adaptive Feature Recognizer that Intertwines Feature Extraction and Manufacturing Analysis
,”
J. Mech. Des.
1050-0472,
121
(
1
), pp.
145
158
.
27.
Faraj
,
I.
, 2003, “
Manufacturing Features: Verification Interaction Accessibility and Machinability
,”
Int. J. Prod. Res.
0020-7543,
41
(
10
), pp.
2249
2272
.
28.
Ferreira
,
P. M.
, and
Liu
,
C. R.
, 1988, “
Generation of Workpiece Orientations for Machining Using A Rule-Based System
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
4
(
3/4
), pp.
545
555
.
29.
Demey
,
S.
,
Brussel
,
H. V.
, and
Derache
,
H.
, 1996, “
Determining Set-ups for Mechanical Workpieces
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
12
(
2
), pp.
195
205
.
30.
Wu
,
H. C.
, and
Chang
,
T. C.
, 1998, “
Automated Setup Selection in Feature-Based Process Planning
,”
Int. J. Prod. Res.
0020-7543,
36
(
3
), pp.
695
712
.
31.
Ong
,
S. K.
,
Ding
,
J.
, and
Nee
,
A. Y. C.
, 2002, “
Hybrid GA and SA Dynamic Set-up Planning Optimization
,”
Int. J. Prod. Res.
0020-7543,
40
(
18
), pp.
4697
4719
.
32.
Lozano-Perez
,
T.
, 1981, “
Automatic Planning of Manipulator Transfer Movements
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
SMC-11
(
10
), pp.
681
698
.
33.
Choi
,
B. K.
,
Kim
,
D. H.
, and
Jerard
,
R. B.
, 1997, “
C-space Approach to Tool-Path Generation for Die and Mound Machining
,”
Comput.-Aided Des.
0010-4485,
29
(
9
), pp.
657
669
.
34.
Choi
,
B. K.
, and
Ko
,
K.
, 2003, “
C-Space Based CAPP Algorithm for Freeform Die-Cavity Machining
,”
Comput.-Aided Des.
0010-4485,
35
(
2
), pp.
179
189
.
35.
Morishige
,
K.
,
Takeuchi
,
Y.
, and
Kase
,
K.
, 1999, “
Tool Path Generation Using C-Space for 5-Axis Control Machining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
(
1
), pp.
144
149
.
36.
Jun
,
C. S.
,
Cha
,
K. D.
, and
Lee
,
Y. S.
, 2003, “
Optimizing Tool Orientations for 5-Axis Machining by Configuration-Space Search Method
,”
Comput.-Aided Des.
0010-4485,
35
(
6
), pp.
549
566
.
You do not currently have access to this content.