Friction drilling uses a rotating conical tool to penetrate the workpiece and create a bushing in a single step without generating chips. This research investigates the three-dimensional (3D) finite element modeling (FEM) of large plastic strain and high-temperature work-material deformation in friction drilling. The explicit FEM code with temperature-dependent mechanical and thermal properties, as well as the adaptive meshing, element deletion, and mass scaling three FEM techniques necessary to enable the convergence of solution, is applied. An inverse method to match the measured and modeling thrust force determines a coefficient of friction of 0.7 in this study. The model is validated by comparing the thrust force, torque, and temperature to experimental measurements with reasonable accuracy. The FEM results show that the peak temperature of the workpiece approaches the work-material solidus temperature. Distributions of plastic strain, temperature, stress, and deformation demonstrate the thermomechanical behavior of the workpiece and advantages of 3D FEM to study of work-material deformation in friction drilling.

1.
van Geffen
,
J. A.
, 1976, “
Piercing Tools
,” US Patent No. 3,939,683.
2.
van Geffen
,
J. A.
, 1979, “
Method and Apparatuses for Forming by Frictional Heat and Pressure Holes Surrounded Each by a Boss in a Metal Plate or the Wall of a Metal Tube
,” US Patent No. 4,175,413.
3.
van Geffen
,
J. A.
, 1979, “
Rotatable Piercing Tools for Forming Holes Surrounded Each by a Boss in Metal Plates or the Wall of Metal Tubes
,” US Patent Number, 4,177,659.
4.
van Geffen
,
J. A.
, 1980, “
Rotatable Piercing Tools for Forming Bossed Holes
,” US Patent No. 4,185,486.
5.
Miller
,
S. F.
,
Blau
,
P.
, and
Shih
,
A. J.
, 2005, “
Microstructural Alterations Associated With Friction Drilling of Steel, Aluminum, and Titanium
,”
J. Mater. Eng. Perform.
1059-9495,
14
(
5
), pp.
647
653
.
6.
Miller
,
S. F.
,
Wang
,
H.
,
Li
,
R.
, and
Shih
,
A. J.
, 2006, “
Experimental and Numerical Analysis of the Friction Drilling Process
,”
ASME J. Manuf. Sci. Eng.
1087-1357
128
(
3
), pp.
802
810
.
7.
Miller
,
S. F.
,
Blau
,
P.
, and
Shih
,
A. J.
, 2006, “
Tool Wear in Friction Drilling
,”
Int. J. Mach. Tools Manuf.
0890-6955 (to appear).
8.
Miller
,
S. F.
,
Tao
,
J.
, and
Shih
,
A. J.
, 2005, “
Friction Drilling of Cast Metals
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
(
12–13
), pp.
1526
1535
.
9.
Feng
,
Z.
,
Santella
,
M. L.
,
David
,
S. A.
,
Steel
,
R. J.
,
Packer
,
S. M.
,
Pan
,
T.
,
Kuo
,
M.
, and
Bhatnagar
,
R. S.
, 2005, “
Friction Stir Spot Welding of Advanced High-Strength Steels—A Feasibility Study
,” SAE Tech. Paper No. 2005-01-1248.
10.
Chao
,
Y. J.
,
Qi
,
X.
, and
Tang
,
W.
, 2003, “
Heat Transfer in Friction Stir Welding-Experimental and Numerical Studies
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
(
1
), pp.
138
145
.
11.
Schmidt
,
H.
, and
Hattel
,
J.
, 2005, “
A Local Model for the Thermomechanical Conditions in Friction Stir Welding
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
13
, pp.
77
93
.
12.
Soundararajan
,
V.
,
Zekovic
,
S.
, and
Kovacevic
,
R.
, 2005, “
Thermo-Mechanical Model With Adaptive Boundary Conditions for Friction Stir Welding of Al 6061
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
, pp.
1577
1587
.
13.
Awang
,
M.
,
Mucino
,
V. H.
,
Feng
,
Z.
, and
David
,
S. A.
, 2005, “
Thermo-Mechanical Modeling of Friction Stir Spot Welding (FSSW) Process: Use of an Explicit Adaptive Meshing Scheme
,” SAE 2005 World Congress, Apr. 13, Detroit.
14.
Kakarla
,
S. S. T.
,
Muci-Kuchler
,
K. H.
,
Arbegast
,
W. J.
, and
Allen
,
C. D.
, 2005, “
Three-Dimensional Finite Element Model of the Friction Stir Spot Welding Process
,” Friction Stir Welding and Processing III, 2005 TMS Annual Meeting, San Francisco, Feb. 13–17, pp.
213
220
.
15.
Soo
,
S. L.
,
Aspinwall
,
D. K.
, and
Dewes
,
R. C.
, 2004, “
3D FE Modeling of the Cutting of Inconel 718
,”
J. Mater. Process. Technol.
0924-0136,
150
, pp.
116
123
.
16.
Feng
,
Z.
,
Gould
,
J. E.
, and
Lienert
,
T. J.
, 1998, “
Heat Flow Model for Friction Stir Welding of Aluminum Alloys
,”
Proc. of TMS Fall Meeting—Symposium on Hot Deformation of Aluminum Alloys II
, Oct 11–15,
Rosemont, IL
, Minerals, Metals and Materials Society, Warrendale, PA, pp.
149
158
.
17.
Buffa
,
G.
,
Hua
,
J.
,
Shivpuri
,
R.
, and
Fratini
,
L.
, 2006, “
A Continuum Based FEM Model for Friction Stir Welding—Model Development
,”
Mater. Sci. Eng., A
0921-5093,
419
, pp.
389
396
.
18.
Serway
,
S.
, 2000,
Physics for Scientists and Engineers
, 5th ed,
Saunders College
,
PA
.
19.
ABAQUS, 2004, ABAQUS∕EXPLICIT User’s Manual, vol.
6.5
, Providence, RI.
20.
Servis
,
D.
, and
Samuelides
,
M.
, 2006, “
Implementation of the T-Failure Criterion in Finite Element Methodologies
,”
Comput. Struct.
0045-7949,
84
, pp.
196
214
.
21.
Chao
,
Y. J.
, and
Qi
,
X.
, 1998, “
Thermal and Thermo-Mechanical Modeling of Friction Stir Welding of Aluminum Alloy 6061-T6
,”
J. Mater. Process. Manuf. Sci.
1062-0656,
7
, pp.
215
233
.
22.
Nicholas
,
T.
, 1981, “
Tensile Testing of Materials at High Rates of Strain
,”
Exp. Mech.
0014-4851,
21
, pp.
177
185
.
23.
Altenhof
,
W.
, and
Ames
,
W.
, 2002, “
Strain Rate Effects for Aluminum and Magnesium Alloys in Finite Element Simulations of Steering Wheel Armature Impact Tests
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
25
, pp.
1149
1156
.
You do not currently have access to this content.