Abstract

A class of deformation processing applications based on the severe plastic deformation (SPD) inherent to chip formation in machining is described. The SPD can be controlled, in situ, to access a range of strains, strain rates, and temperatures. These parameters are tuned to engineer nanoscale microstructures (e.g., nanocrystalline, nanotwinned, and bimodal) by in situ control of the deformation rate. By constraining the chip formation, bulk forms (e.g., foil, sheet, and rod) with nanocrystalline and ultrafine grained microstructures are produced. Scaling down of the chip formation in the presence of a superimposed modulation enables production of nanostructured particulate with controlled particle shapes, including fiber, equiaxed, and platelet types. The SPD conditions also determine the deformation history of the machined surface, enabling microstructural engineering of surfaces. Application of the machining-based SPD to obtain deformation-microstructure maps is illustrated for a model material system—99.999% pure copper. Seemingly diverse, these unusual applications of machining are united by their common origins in the SPD phenomena prevailing in the deformation zone. Implications for large-scale manufacturing of nanostructured materials and optimization of SPD microstructures are briefly discussed.

References

1.
Embury
,
J. D.
, and
Fisher
,
R. M.
, 1966, “
Structure and Properties of Drawn Pearlite
,”
Acta Metall.
0001-6160,
14
(
2
), pp.
147
159
.
2.
Langford
,
G.
, and
Cohen
,
M.
, 1969, “
Strain Hardening of Iron by Severe Plastic Deformation
,”
Trans. ASME, Ser. B
0022-0817,
62
, pp.
623
638
.
3.
Segal
,
V. M.
,
Reznikov
,
V. I.
,
Drobyshevskiy
,
A. E.
, and
Kopylov
,
V.
, 1981, “
Plastic Working of Metals by Simple Shear
,”
Russ. Metall.
0036-0295,
1
, pp.
99
105
.
4.
Valiev
,
R. Z.
,
Islamgaliev
,
R. K.
, and
Alexandrov
,
I. V.
, 2000, “
Bulk Nanostructured Materials From Severe Plastic Deformation
,”
Prog. Mater. Sci.
0079-6425,
45
, pp.
103
189
.
5.
Valiev
,
R. Z.
, and
Langdon
,
T. G.
, 2006, “
Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement
,”
Prog. Mater. Sci.
0079-6425,
51
, pp.
881
981
.
6.
Brown
,
T. L.
,
Saldana
,
C.
,
Murthy
,
T. G.
,
Mann
,
J. B.
,
Compton
,
W. D.
,
Trumble
,
K. P.
,
King
,
A. H.
, and
Chandrasekar
,
S.
, 2009, “
A Study of the Interactive Effects of Strain, Strain Rate, and Temperature in Severe Plastic Deformation of Copper
,”
Acta Mater.
1359-6454,
57
, pp.
5491
5500
.
7.
Brown
,
T. L.
,
Swaminathan
,
S.
,
Chandrasekar
,
S.
,
Compton
,
W. D.
,
King
,
A. H.
, and
Trumble
,
K. P.
, 2002, “
Low Cost Manufacturing Process for Nanostructured Metals and Alloys
,”
J. Mater. Res.
0884-2914,
17
(
10
), pp.
2484
2488
.
8.
Swaminathan
,
S.
,
Shankar
,
M. R.
,
Lee
,
S.
,
Hwang
,
J.
,
King
,
A. H.
,
Kezar
,
R.
,
Rao
,
B. C.
,
Brown
,
T. L.
,
Chandrasekar
,
S.
,
Compton
,
W. D.
, and
Trumble
,
K. P.
, 2005, “
Large Strain Deformation and Ultra-Fine Grained Materials by Machining
,”
Mater. Sci. Eng., A
0921-5093,
410–411
, pp.
358
363
.
9.
Shaw
,
M. C.
, 1984,
Metal Cutting Principles
,
Oxford University Press
,
New York
.
10.
Moscoso
,
W.
,
Shankar
,
M. R.
,
Mann
,
J. B.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
, 2007, “
Bulk Nanostructured Materials by Large Strain Extrusion Machining
,”
J. Mater. Res.
0884-2914,
22
(
1
), pp.
201
205
Moscoso
,
W.
,
Mann
,
J. B.
,
Shankar
,
M. R.
,
Chandrasekar
,
S.
, and
Compton
,
W. D.
, 2009, “
Process of Producing Nanocrystalline Bodies
,” U.S. Patent No. 7,617,750, Nov. 17.
11.
Gnanamanickam
,
E. P.
,
Lee
,
S.
,
Sullivan
,
J. P.
, and
Chandrasekar
,
S.
, 2009, “
Direct Measurement of Large-Strain Deformation Fields by Particle Tracking
,”
Meas. Sci. Technol.
0957-0233,
20
, p.
095710
.
12.
Lee
,
S.
,
Hwang
,
J.
,
Shankar
,
M. R.
,
Chandrasekar
,
S.
, and
Compton
,
W. D.
, 2006, “
Large Strain Deformation Field in Machining
,”
Metall. Mater. Trans. A
1073-5623,
37
(
5
), pp.
1633
1643
.
13.
Thomsen
,
E. G.
,
Yang
,
C. T.
, and
Kobayashi
,
S.
, 1965,
Mechanics of Plastic Deformation in Metal Processing
,
Macmillan
,
New York
.
14.
Keciouglu
,
D.
, 1958, “
Shear-Strain Rate in Metal Cutting and Its Effects on Shear-Flow Stress
,”
Trans. ASME
0097-6822,
80
, pp.
158
168
.
15.
Oxley
,
P. L. B.
, 1989,
Mechanics of Machining
,
Ellis Horwood
,
New York
.
16.
Oxley
,
P. L. B.
, and
Hastings
,
W. F.
, 1977, “
Predicting the Strain Rate in the Zone of Intense Shear in Which the Chip Is Formed in Machining From the Dynamic Flow Stress Properties of the Work Material and the Cutting Conditions
,”
Proc. R. Soc. London
0370-1662,
356
, pp.
395
410
.
17.
Samuels
,
L. E.
, 2003,
Metallographic Polishing by Mechanical Methods
, 4th ed.,
American Society for Materials International
,
OH
.
18.
M’Saoubi
,
R.
, and
Ryde
,
L.
, 2005, “
Application of the EBSD Technique for the Characterisation of Deformation Zones in Metal Cutting
,”
Mater. Sci. Eng., A
0921-5093,
405
(
1–2
), pp.
339
349
.
19.
Sevier
,
M.
,
Yang
,
H. T. Y.
,
Lee
,
S.
, and
Chandrasekar
,
S.
, 2007, “
Severe Plastic Deformation by Machining Characterized by Finite Element Simulation
,”
Metall. Mater. Trans. B
1073-5615,
38
(
6
), pp.
927
938
.
20.
Boothroyd
,
G.
, 1963, “
Temperatures in Orthogonal Metal Cutting
,”
Proc. Inst. Mech. Eng.
0020-3483,
177
, pp.
789
810
.
21.
Weiner
,
J. H.
, 1955, “
Shear-Plane Temperature Distribution in Orthogonal Cutting
,”
Trans. ASME
0097-6822,
77
, pp.
1331
1341
.
22.
Drucker
,
D. C.
, 1949, “
An Analysis of the Mechanics of Metal Cutting
,”
J. Appl. Phys.
0021-8979,
20
, pp.
1013
1021
.
23.
Maekawa
,
K.
,
Obikawa
,
T.
,
Yamane
,
Y.
, and
Childs
,
T. H. C.
, 2000,
Metal Machining: Theory and Applications
,
Butterworths-Heinemann
,
London
.
24.
Adibi-Sedeh
,
A. H.
,
Madhavan
,
V.
, and
Bahr
,
B.
, 2003, “
Extension of Oxley’s Analysis of Machining to Use Different Material Models
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
(
4
), pp.
656
666
.
25.
Swaminathan
,
S.
,
Brown
,
T. L.
,
Chandrasekar
,
S.
,
McNelley
,
T. R.
, and
Compton
,
W. D.
, 2007, “
Severe Plastic Deformation of Copper by Machining: Microstructure Refinement and Nanostructure Evolution With Strain
,”
Scr. Mater.
1359-6462,
56
(
12
), pp.
1047
1050
.
26.
Hughes
,
D. A.
, and
Hansen
,
N.
, 1997, “
High Angle Boundaries Formed by Grain Subdivision Mechanisms
,”
Acta Mater.
1359-6454,
45
(
9
), pp.
3871
3886
.
27.
Humphreys
,
F. J.
, and
Hatherly
,
M.
, 2004,
Recrystallization and Related Annealing Phenomena
, 2nd ed.,
Elsevier
,
Oxford, UK
.
28.
Mishra
,
A.
,
Kad
,
B. K.
,
Gregoric
,
F.
, and
Meyer
,
M. A.
, 2007, “
Microstructural Evolution in Copper Subjected to Severe Plastic Deformation: Experiments and Analysis
,”
Acta Mater.
1359-6454,
55
(
1
), pp.
13
28
.
29.
Dalla Torre
,
F.
,
Lapovok
,
R.
,
Sandlin
,
J.
,
Thomson
,
P. F.
,
Davies
,
C. H. J.
, and
Pereloma
,
E. V.
, 2004, “
Microstructures and Properties of Copper Processed by Equal Channel Angular Extrusion for 1–16 Passes
,”
Acta Mater.
1359-6454,
52
(
16
), pp.
4819
4832
.
30.
Lu
,
L.
,
Shen
,
Y. F.
,
Chen
,
X. H.
,
Qian
,
L. H.
, and
Lu
,
K.
, 2004, “
Ultrahigh Strength and High Electrical Conductivity in Copper
,”
Science
0036-8075,
304
, pp.
422
426
.
31.
Li
,
Y. S.
,
Zhang
,
Y.
,
Tao
,
N. R.
, and
Lu
,
K.
, 2009, “
Effect of the Zener–Hollomon Parameter on the Microstructures and Mechanical Properties of Cu Subjected to Plastic Deformation
,”
Acta Mater.
1359-6454,
57
(
3
), pp.
761
772
.
32.
Saldana
,
C.
,
Murthy
,
T. G.
,
Shankar
,
M. R.
,
Stach
,
E. A.
, and
Chandrasekar
,
S.
, 2009, “
Stabilizing Nanostructured Materials by Coherent Nanotwins and Their Grain Boundary Triple Junction Drag
,”
Appl. Phys. Lett.
0003-6951,
94
, p.
021910
.
33.
Wang
,
Y. M.
, and
Ma
,
E.
, 2004, “
Three Strategies to Achieve Uniform Tensile Deformation in a Nanostructured Metal
,”
Acta Mater.
1359-6454,
52
(
6
), pp.
1699
1709
.
34.
Wang
,
Y. M.
,
Chen
,
M.
,
Zhou
,
F.
, and
Ma
,
E.
, 2002, “
High Tensile Ductility in a Nanostructured Metal
,”
Nature (London)
0028-0836,
419
, pp.
912
915
.
35.
De Chiffre
,
L.
, 1983, “
Extrusion-Cutting of Brass Strips
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
23
(
2–3
), pp.
141
151
.
36.
Saldana
,
C.
,
Yang
,
P.
,
Mann
,
J. B.
,
Moscoso
,
W.
,
Gill
,
D. D.
,
Chandrasekar
,
S.
, and
Trumble
,
K. P.
, 2009, “
Micro-Scale Components From High-Strength Nanostructured Alloys
,”
Mater. Sci. Eng., A
0921-5093,
503
(
1–2
), pp.
172
175
.
37.
Swaminathan
,
S.
,
Shankar
,
M. R.
,
Rao
,
B. C.
,
Compton
,
W. D.
,
Chandrasekar
,
S.
,
King
,
A. H.
, and
Trumble
,
K. P.
, 2007, “
Severe Plastic Deformation and Nanostructured Materials by Machining
,”
J. Mater. Sci.
0022-2461,
42
(
5
), pp.
1529
1541
.
38.
Rajurkar
,
K. P.
,
Levy
,
G.
,
Malshe
,
A.
,
Sundaram
,
M. M.
,
McGeough
,
J.
,
Hu
,
X.
,
Resnick
,
R.
, and
DeSilva
,
A.
, 2006, “
Micro and Nano Machining by Electro-Physical and Chemical Processes
,”
CIRP Ann.
0007-8506,
55
(
2
), pp.
643
666
.
39.
Lenel
,
F. V.
, 1980,
Powder Metallurgy: Principles and Applications
,
Metal Powder Industries Federation
,
Princeton, NJ
.
40.
Witkin
,
D. B.
, and
Lavernia
,
E. J.
, 2006, “
Synthesis and Mechanical Behavior of Nanostructured Materials via Cryomilling
,”
Prog. Mater. Sci.
0079-6425,
51
, pp.
1
60
.
41.
Mann
,
J. B.
,
Shankar
,
M. R.
,
Chandrasekar
,
S.
,
Compton
,
W. D.
, and
Moscoso
,
W.
, 2009, “
Machining Method to Controllably Produce Chips With Determinable Shapes and Sizes
,” U.S. Patent No. 7,628,099, Dec. 8.
Mann
,
J. B.
,
Chandrasekar
,
S.
, and
Compton
,
W. D.
, 2009, “
Tool-Holder Assembly and Method for Modulation-Assisted Machining
,” U.S. Patent No. 7,587,965, Sept. 15.
42.
Toews
,
H. G.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
, 1998, “
A Study of the Influence of Super-Imposed Low Frequency Modulation on the Drilling Process
,”
Precis. Eng.
0141-6359,
22
(
1
), pp.
1
9
.
43.
Chhabra
,
P. N.
,
Ackroyd
,
B.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
, 2002, “
Low-Frequency Modulation-Assisted Drilling Using Linear Drives
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
216
, pp.
321
330
.
44.
Mann
,
J. B.
,
Saldana
,
C.
,
Chandrasekar
,
S.
,
Compton
,
W. D.
, and
Trumble
,
K. P.
, 2007, “
Metal Particulate Production by Modulation-Assisted Machining
,”
Scr. Mater.
1359-6462,
57
(
10
), pp.
909
912
.
45.
Doi
,
S.
, and
Kato
,
S.
, 1956, “
Chatter Vibration of Lathe Tools
,”
Trans. ASME
0097-6822,
78
(
5
), pp.
1127
1134
.
46.
Nakagawa
,
T.
, and
Suzuki
,
K.
, 1987, “
Method For Producing Ultra Fine and Short Metal Fibers
,” U.S. Patent No. 4,703,898, Nov. 3.
47.
Nakagawa
,
T.
,
Suzuki
,
K.
,
Uematsu
,
T.
, and
Koyama
,
H.
, 1982, “
Production of Fine Short-Length Metal Fibers Using Self-Excited Vibration of an Elastic Tool
,”
Proceedings of the 23rd International Machine Tool Design And Research Conference
, pp.
323
330
.
48.
Calistes
,
R.
,
Swaminathan
,
S.
,
Murthy
,
T. G.
,
Huang
,
C.
,
Saldana
,
C.
,
Shankar
,
M. R.
, and
Chandrasekar
,
S.
, 2009, “
Controlling Gradation of Surface Strains and Nanostructuring by Large Strain Machining
,”
Scr. Mater.
1359-6462,
60
(
1
), pp.
17
20
.
49.
Ramalingam
,
S.
, 1967, “
Plastic Deformation in Metal Cutting
,” Ph.D. thesis, University of Illinois, IL.
50.
Turley
,
D. M.
, and
Samuels
,
L. E.
, 1981, “
The Nature of Mechanically Polished Surfaces of Copper
,”
Metallography
0026-0800,
14
(
4
), pp.
275
294
.
51.
Rogers
,
H. C.
, 1979, “
Adiabatic Plastic Deformation
,”
Annu. Rev. Mater. Sci.
0084-6600,
9
, pp.
283
311
.
52.
Matsumoto
,
Y.
,
Barash
,
M. M.
, and
Liu
,
C. R.
, 1986, “
Effect of Hardness on the Surface Integrity of AISI 4340 Steel
,”
J. Eng. Ind.
0022-0817,
108
(
3
), pp.
169
175
.
53.
Akcan
,
S.
,
Shah
,
S.
,
Moylan
,
S. P.
,
Chhabra
,
P. N.
,
Chandrasekar
,
S.
, and
Yang
,
H. T. Y.
, 2002, “
Formation of White Layers in Steels by Machining and Their Characteristics
,”
Metall. Mater. Trans. A
1073-5623,
33
(
4
), pp.
1245
1254
.
54.
Ramesh
,
A.
,
Melkote
,
S. N.
,
Allard
,
L. F.
,
Riester
,
L.
, and
Watkins
,
T. R.
, 2005, “
Analysis of White Layers Formed in Hard Turning of AISI 52100 Steel
,”
Mater. Sci. Eng., A
0921-5093,
390
(
1–2
), pp.
88
97
.
55.
Rigney
,
D. A.
, 2000, “
Transfer, Mixing and Associated Chemical and Mechanical Processes During the Sliding of Ductile Materials
,”
Wear
0043-1648,
245
(
1–2
), pp.
1
9
.
56.
Hughes
,
D. A.
,
Chrzan
,
D. C.
,
Liu
,
Q.
, and
Hansen
,
N.
, 1998, “
Scaling of Misorientation Angle Distributions
,”
Phys. Rev. Lett.
0031-9007,
81
, pp.
4664
4667
.
57.
Zhu
,
K. Y.
,
Vassel
,
A.
,
Brisset
,
F.
,
Lu
,
K.
, and
Lu
,
J.
, 2004, “
Nanostructure Formation Mechanism of α-Titanium Using SMAT
,”
Acta Mater.
1359-6454,
52
(
14
), pp.
4101
4110
.
58.
Mann
,
J. B.
,
Saldana
,
C.
,
Moscoso
,
W.
,
Murthy
,
T. G.
,
Huang
,
C.
,
Swaminathan
,
S.
,
Rao
,
B. C.
,
Shankar
,
M. R.
,
Compton
,
W. D.
,
Trumble
,
K. P.
, and
Chandrasekar
,
S.
, 2008, “
Unusual Applications of Machining
,”
Proceedings of the 23rd All India International Industrial Manufacturing Technology, Design and Research Conference
, pp.
47
55
.
59.
Stobbs
,
W. M.
,
Kallend
,
J. S.
, and
Williams
,
J. A.
, 1976, “
Deformation Behaviour of Copper in Ultramicrotomy
,”
Acta Metall.
0001-6160,
24
(
12
), pp.
1083
1093
.
You do not currently have access to this content.