The warm sheet hydroforming process was investigated to determine the optimal process conditions of temperature, pressure, and pressurization rate for maximum formability of AA5754-O using an experimental stretch forming die shape. The optimal process conditions were evaluated to determine the robustness and process capability based on physical measurement of formed parts including thickness strain, cavity fill ratio, and radius of curvature. For the simple die shape investigated, a temperature of 268°C, a pressure of 25 MPa, and a pressurization rate of 0.22 MPa/s provided the most balanced combination of uniform thickness strain with the greatest cavity fill ratio and sharpest radius. Temperature had a greater effect on measured properties than either pressure or pressurization rate, although the effect of pressure increased as temperature decreased. The procedures demonstrated in this experimental study could be used to optimize process parameters for robust operation of production applications for more complex automotive body panels fabricated by the warm hydroforming process.

1.
Schultz
,
R. A.
, 1999, “
Aluminum for Light Vehicles—An Objective Look at the Next Ten to Twenty Years
,”
14th International Aluminum Conference
, Montreal, Canada, Sept. 15.
2.
Carpenter
,
J. A.
, 2004, “
The FreedomCAR Challenge and Steel
,”
Great Designs in Steel Seminar
, American Iron and Steel Institute, Livonia, MI, pp.
96
111
.
3.
Mildenberger
,
U.
, and
Khare
,
A.
, 2000, “
Planning for an Environment-Friendly Car
,”
Technovation
0166-4972,
20
, pp.
205
214
.
4.
Verbrugge
,
M.
,
Lee
,
T.
,
Krajewski
,
P. E.
,
Sachdev
,
A.
,
Bjelkengren
,
C.
,
Roth
,
R.
, and
Kirchain
,
R.
, 2009, “
Mass Decompounding and Vehicle Lightweighting
,”
Mater. Sci. Forum
0255-5476,
618–619
, pp.
411
418
.
5.
Groche
,
P.
, 2002, “
Hydromechanical Deep-Drawing of Aluminum-Alloys at Elevated Temperature
,”
CIRP Ann.
0007-8506,
51
, pp.
215
218
.
6.
Kim
,
H. S.
,
Koç
,
M.
, and
Ni
,
J.
, 2006, “
Finite Element Modeling and Analysis of Warm Forming of Aluminum Alloys-Validation Through Comparison With Experiments and Determination of a Failure Criterion
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
613
621
.
7.
Groche
,
P.
, and
Dörr
,
J.
, 2004, personal communication.
8.
Siegert
,
K.
, 2003, “
Pneumatic Bulging of Magnesium AZ31 Sheet Metals at Elevated Temperatures
,”
CIRP Ann.
0007-8506,
52
, pp.
241
244
.
9.
Siegert
,
K.
, and
Jäger
,
S.
, 2004, “
Warm Forming of Magnesium Sheet Metal
,”
SAE 2004 World Congress & Exhibition
, Detroit, MI, Paper No. 2004-01-1043.
10.
Novotny
,
S.
, 2003, “
Process Design for Hydroforming of Lightweight Metal Sheets at Elevated Temperatures
,”
J. Mater. Process. Technol.
0924-0136,
138
, pp.
594
599
.
11.
Li
,
D.
, and
Ghosh
,
A.
, 2003, “
Tensile Deformation Behavior of Aluminum Alloys at Warm Forming Temperatures
,”
Mater. Sci. Eng., A
0921-5093,
352
, pp.
279
286
.
12.
Abedrabbo
,
N.
,
Pourboghrat
,
F.
, and
Carsley
,
J.
, 2006, “
Forming of Aluminum Alloys at Elevated Temperature—Part 1: Material Characterization
,”
Int. J. Plast.
0749-6419,
22
, pp.
314
341
.
13.
Abedrabbo
,
N.
,
Pourboghrat
,
F.
, and
Carsley
,
J.
, 2006, “
Forming of Aluminum Alloys at Elevated Temperature—Part 2: Numerical Modeling and Experimental Verification
,”
Int. J. Plast.
0749-6419,
22
, pp.
342
373
.
14.
Abedrabbo
,
N.
,
Pourboghrat
,
F.
, and
Carsley
,
J.
, 2007, “
Forming of AA5182-O and AA5754-O at Elevated Temperatures Using Coupled Thermomechanical Finite Element Models
,”
Int. J. Plast.
0749-6419,
23
, pp.
841
875
.
15.
Choi
,
H.
,
Koç
,
M.
, and
Ni
,
J.
, 2007, “
Determination of Optimal Loading Profiles in Warm Hydroforming of Lightweight Materials
,”
J. Mater. Process. Technol.
0924-0136,
190
, pp.
230
242
.
16.
Kim
,
H. S.
,
Koç
,
M.
, and
Ni
,
J.
, 2006, “
Determination of Proper Temperature Distribution for Warm Forming of Aluminum Sheet Materials
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
622
633
.
17.
van den Boogaar
,
A. H.
, and
Huetink
,
J.
, 2006, “
Simulation of Aluminum Sheet Forming at Elevated Temperatures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
6691
6709
.
18.
Takata
,
K.
,
Ohwue
,
T.
,
Saga
,
M.
, and
Kikuchi
,
M.
, 2006, “
Formability of Al-Mg Alloy at Warm Temperature
,”
Mater. Sci. Forum
0255-5476,
331–337
, pp.
631
636
.
19.
Mahabunphachai
,
S.
,
Koç
,
M.
, and
Carsley
,
J. E.
, 2010, “
Numerical and Experimental Investigations on Deformation Behavior of Aluminum 5754 Sheet Alloy Under Warm Hydroforming Conditions
,”
NUMIFORM 2010, Minisymposia 1: Advances in Modeling and Experiments for Materials Forming
, Pohang, South Korea, Jun. 14.
20.
Verma
,
R.
,
Hector
,
L. G.
, Jr.
,
Krajewski
,
P. E.
, and
Taleff
,
E. M.
, 2009, “
The Finite Element Simulation of High Temperature Magnesium AZ31 Sheet Forming
,”
JOM
1047-4838,
61
, pp.
29
37
.
21.
Taleff
,
E. M.
,
Hector
,
L. G.
, Jr.
,
Bradley
,
J. R.
,
Verma
,
R.
, and
Krajewski
,
P. E.
, 2010, “
Local Thinning at a Die Entry Radius During Hot Gas-Pressure Forming of an AA5083 Sheet
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
132
(
1
), p.
011016
.
22.
Box
,
G.
, and
Behnken
,
D.
, 1960, “
Some New Three Level Designs for the Study of Quantitative Variables
,”
Technometrics
0040-1706,
2
, pp.
455
475
.
You do not currently have access to this content.