Throughput bottlenecks define and constrain the productivity of a production line. The most cost-effective way to improve system throughput is to mitigate bottlenecks toward a balanced system. Most of the currently used bottleneck detection schemes found in literature utilize long-term analysis to identify the bottlenecks for a known period and ignore the operation dynamics leading to bottleneck shifts. This paper proposes a method for predicting the throughput bottlenecks of a production line using autoregressive moving average (ARMA) model. We consider the production blockage and starvation times of each station to be a time series used to predict throughput bottlenecks. It is realized that the blockage and starvation times of a production line are critical indicators reflecting the production system dynamics and its internal material flow. As the first attempt in literature for throughput bottleneck prediction, the results demonstrate that the ARMA model can accurately predict blockage and starvation information of each station and hence can accurately predict the system throughput bottleneck, which will lead to the most significant production improvement.

1.
Chang
,
Q.
,
Ni
,
J.
,
Bandyopadhyay
,
P.
,
Biller
,
S.
, and
Xiao
,
G.
, 2007, “
Supervisory Factory Control Based on Real-Time Production Feedback
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
, pp.
653
660
.
2.
Li
,
L.
,
Chang
,
Q.
, and
Ni
,
J.
, 2009, “
Data Driven Bottleneck Detection of Manufacturing Systems
,”
Int. J. Prod. Res.
0020-7543,
47
(
18
), pp.
5019
5036
.
3.
Law
,
A. M.
, and
McComas
,
M. G.
, 1998, “
Simulation of Manufacturing Systems
,”
Proceedings of the 1998 Winter Simulation Conference
, Washington, DC, Vol.
1
, pp.
49
52
.
4.
Bonder
,
D. A.
, and
McGinnis
,
L. F.
, 2002, “
A Structured Approach to Simulation Modeling of Manufacturing Systems
,”
Proceedings of the 2002 Industrial Engineering Research Conference
, Orlando, FL.
5.
Roser
,
C.
,
Nakano
,
M.
, and
Tanaka
,
M.
, 2003, “
Comparison of Bottleneck Detection Methods for AGV Systems
,”
Proceedings of the 2003 Winter Simulation Conference
, pp.
1192
1198
.
6.
Alden
,
J. M.
,
Burns
,
L. D.
,
Costy
,
T.
,
Hutton
,
R. D.
,
Jackson
,
C. A.
,
Kim
,
D. S.
,
Kohls
,
K. A.
,
Owen
,
J. H.
,
Turnquist
,
M. A.
, and
Vander Veen
,
D. J.
, 2006, “
General Motors Increases Its Production Throughput
,”
Interfaces
0092-2102,
36
(
1
), pp.
6
25
.
7.
Buzacott
,
J. A.
, and
Shanthikumar
,
J. G.
, 1993,
Stochastic Models of Manufacturing Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
8.
Gershwin
,
S. B.
, 1994,
Manufacturing Systems Engineering
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
9.
Wang
,
J. C.
,
Zhou
,
M. C.
, and
Deng
,
Y.
, 1999, “
Throughput Analysis of Discrete Event Systems Based on Stochastic Petri Nets
,”
Int. J. Intell. Contr. Syst.
,
3
(
3
), pp.
343
358
.
10.
Muthiah
,
K. M. N.
, and
Huang
,
S. H.
, 2007, “
Overall Throughput Effectiveness (OTE) Metric for Factory-Level Performance Monitoring and Bottleneck Detection
,”
Int. J. Prod. Res.
0020-7543,
45
(
20
), pp.
4753
4769
.
11.
Lawrence
,
S. R.
, and
Buss
,
A. H.
, 1995, “
Economic Analysis of Production Bottlenecks
,”
Math. Probl. Eng.
1024-123X,
1
(
4
), pp.
341
363
.
12.
Gershwin
,
S. B.
, 1987, “
An Efficient Decomposition Method for the Approximate Evaluation of Tandem Queues With Finite Storage Space and Blocking
,”
Oper. Res.
0030-364X,
35
(
2
), pp.
291
305
.
13.
Kuo
,
C. T.
,
Lim
,
J. T.
, and
Meerkov
,
S. M.
, 1996, “
Bottlenecks in Serial Production Lines: A System-Theoretic Approach
,”
Math. Probl. Eng.
1024-123X,
2
, pp.
233
276
.
14.
Chiang
,
S. Y.
,
Kuo
,
C. T.
, and
Meerkov
,
S. M.
, 1998, “
Bottlenecks in Markovian Production Lines: A Systems Approach
,”
IEEE Trans. Robot. Autom.
,
14
(
2
), pp.
352
359
.
15.
Chiang
,
S. -Y.
,
Kuo
,
C. -T.
, and
Meerkov
,
S. M.
, 2000, “
DT-Bottlenecks in Serial Production Lines: Theory and Application
,”
IEEE Trans. Rob. Autom.
1042-296X,
16
(
5
), pp.
567
580
.
16.
Chiang
,
S. Y.
,
Kuo
,
C. T.
, and
Meerkov
,
S. M.
, 2001, “
c-Bottlenecks in Serial Production Lines: Identification and Application
,”
Math. Probl. Eng.
1024-123X,
7
, pp.
543
578
.
17.
Pandit
,
S. M.
, and
Wu
,
S.
, 1993,
Time Series and System Analysis With Applications
,
Wiley
,
New York
.
18.
Montgomery
,
D. C.
,
Jennings
,
C. L.
, and
Kulahci
,
M.
, 2008,
Introduction to Time Series Analysis and Forecasting
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.