Dip pen nanolithography (DPN) is a flexible nanofabrication process for creating 2-D nanoscale features on a surface using an “inked” tip. Although a variety of ink-surface combinations can be used for creating 2-D nanofeatures using DPN, the process has not yet been characterized for high throughput and high quality manufacturing. Therefore, at present it is not possible to (i) predict whether fabricating a part is feasible within the constraints of the desired rate and quality and (ii) select/design equipment appropriate for the desired manufacturing goals. Herein, we have quantified the processing rate, tool life, and feature quality for DPN line writing by linking these manufacturing metrics to the process/system parameters. Based on this characterization, we found that (i) due to theoretical and practical constraints of current technology, the processing rate cannot be increased beyond about 20 times the typical rate of ∼1 μm2/min, (ii) tool life for accurate line writing is limited to 1–5 min, and (iii) sensitivity of line width to process parameters decreases with an increase in the writing speed. Thus, we conclude that for a high throughput and high quality system, we need (i) parallelization or process modification to improve throughput and (ii) accurate fixtures for rapid tool change. We also conclude that process control at high speed writing is less stringent than at low speed writing, thereby suggesting that DPN has a niche in high speed writing of narrow lines.

References

1.
Malshe
,
A. P.
,
Rajurkar
,
K. P.
,
Virwani
,
K. R.
,
Taylor
,
C. R.
,
Bourell
,
D. L.
,
Levy
,
G.
,
Sundaram
,
M. M.
,
Mcgeough
,
J. A.
,
Kalyanasundaram
,
V.
, and
Samant
,
A. N.
, 2010, “
Tip-Based Nanomanufacturing by Electrical, Chemical, Mechanical, and Thermal Processes
,”
CIRP Ann-Manuf. Technol.
,
59
(
2
), pp.
628
651
.
2.
Salaita
,
K.
,
Wang
,
Y.
, and
Mirkin
,
C. A.
, 2007, “
Applications of Dip-Pen Nanolithography
,”
Nat. Nanotechnol.
,
2
(
3
), pp.
145
155
.
3.
Piner
,
R. D.
,
Zhu
,
J.
,
Xu
,
F.
,
Hong
,
S.
, and
Mirkin
,
C. A.
, 1999, “
Dip-Pen Nanolithography
,”
Science
,
283
(
5402
), pp.
661
663
.
4.
Ginger
,
D. S.
,
Zhang
,
H.
, and
Mirkin
,
C. A.
, 2004, “
The Evolution of Dip-Pen Nanolithography
,”
Angew. Chem., Int. Ed.
,
43
(
1
), pp.
30
45
.
5.
Ivanisevic
,
A.
, and
Mirkin
,
C. A.
, 2001, “
Dip-Pen Nanolithography on Semiconductor Surfaces
,”
J. Am. Chem. Soc.
,
123
(
32
), pp.
7887
7889
.
6.
Maynor
,
B. W.
,
Li
,
Y.
, and
Liu
,
J.
, 2001, “
Au “Ink,” for AFM “Dip-Pen,” Nanolithography
,”
Langmuir
,
17
(
9
), pp.
2575
2578
.
7.
Demers
,
L. M.
,
Ginger
,
D. S.
,
Park
,
S.-J.
,
Li
,
Z.
,
Chung
,
S.-W.
, and
Mirkin
,
C. A.
, 2002, “
Direct Patterning of Modified Oligonucleotides on Metals and Insulators by Dip-Pen Nanolithography
,”
Science
,
296
(
5574
), pp.
1836
1838
.
8.
Lim
,
J.-H.
,
Ginger
,
D. S.
,
Lee
,
K.-B.
,
Heo
,
J.
,
Nam
,
J.-M.
, and
Mirkin
,
C. A.
, 2003, “
Direct-Write Dip-Pen Nanolithography of Proteins on Modified Silicon Oxide Surfaces
,”
Angew. Chem., Int. Ed.
,
42
(
20
), pp.
2309
2312
.
9.
Basnar
,
B.
, and
Willner
,
I.
, 2009, “
Dip-Pen-Nanolithographic Patterning of Metallic, Semiconductor, and Metal Oxide Nanostructures on Surfaces
,”
Small
,
5
(
1
), pp.
28
44
.
10.
Saha
,
S. K.
, and
Culpepper
,
M. L.
, 2010, “
An Ink Transport Model for Prediction of Feature Size in Dip Pen Nanolithography
,”
J. Phys. Chem. C
,
114
(
36
), pp.
15364
15369
.
11.
Rozhok
,
S.
,
Piner
,
R.
, and
Mirkin
,
C. A.
, 2002, “
Dip-Pen Nanolithography: What Controls Ink Transport?
,”
J. Phys. Chem. B
,
107
(
3
), pp.
751
757
.
12.
Peterson
,
E. J.
,
Weeks
,
B. L.
,
De Yoreo
,
J. J.
, and
Schwartz
,
P. V.
, 2004, “
Effect of Environmental Conditions on Dip Pen Nanolithography of Mercaptohexadecanoic Acid
,”
J. Phys. Chem. B
,
108
(
39
), pp.
15206
15210
.
13.
Weeks
,
B. L.
,
Noy
,
A.
,
Miller
,
A. E.
, and
De Yoreo
,
J. J.
, 2002, “
Effect of Dissolution Kinetics on Feature Size in Dip-Pen Nanolithography
,”
Phys. Rev. Lett.
,
88
(
25
),
255505
.
14.
Jang
,
J.
,
Hong
,
S.
,
Schatz
,
G. C.
, and
Ratner
,
M. A.
, 2001, “
Self-Assembly of Ink Molecules in Dip-Pen Nanolithography: A Diffusion Model
,”
J. Chem. Phys.
,
115
(
6
), pp.
2721
2729
.
15.
Haaheim
,
J.
,
Eby
,
R.
,
Nelson
,
M.
,
Fragala
,
J.
,
Rosner
,
B.
,
Zhang
,
H.
, and
Athas
,
G.
, 2005, “
Dip Pen Nanolithography (Dpn): Process and Instrument Performance With Nanoink’s Nscriptor System
,”
Ultramicroscopy
,
103
(
2
), pp.
117
132
.
16.
Schwartz
,
P. V.
, 2002, “
Molecular Transport from an Atomic Force Microscope Tip: A Comparative Study of Dip-Pen Nanolithography
,”
Langmuir
,
18
(
10
), pp.
4041
4046
.
17.
Saha
,
S. K.
, and
Culpepper
,
M. L.
, 2010, “
A Surface Diffusion Model for Dip Pen Nanolithography Line Writing
,”
Appl. Phys. Lett.
,
96
(
24
),
243105
.
18.
Groves
,
T. R.
,
Pickard
,
D.
,
Rafferty
,
B.
,
Crosland
,
N.
,
Adam
,
D.
, and
Schubert
,
G.
, 2002, “
Maskless Electron Beam Lithography: Prospects, Progress, and Challenges
,”
Microelectron. Eng.
,
61-62
, pp.
285
293
.
19.
Schift
,
H.
, 2008, “
Nanoimprint Lithography: An Old Story in Modern Times? A Review
,”
J. Vac. Sci. Technol. B
,
26
(
2
), pp.
458
480
.
20.
Kim
,
K.-H.
,
Moldovan
,
N.
, and
Espinosa
,
H. D.
, 2005, “
A Nanofountain Probe With Sub-100 Nm Molecular Writing Resolution
,”
Small
,
1
(
6
), pp.
632
635
.
21.
Li
,
Y.
,
Maynor
,
B. W.
, and
Liu
,
J.
, 2001, “
Electrochemical Afm “Dip-Pen,” Nanolithography
,”
J. Am. Chem. Soc.
,
123
(
9
), pp.
2105
2106
.
22.
Salaita
,
K.
,
Wang
,
Y.
,
Fragala
,
J.
,
Vega
,
R. A.
,
Liu
,
C.
, and
Mirkin
,
C. A.
, 2006, “
Massively Parallel Dip-Pen Nanolithography with 55 000-Pen Two-Dimensional Arrays
,”
Angew. Chem., Int. Ed.
,
45
(
43
), pp.
7220
7223
.
23.
Rosner
,
B.
,
Duenas
,
T.
,
Banerjee
,
D.
,
Shile
,
R.
,
Amro
,
N.
, and
Rendlen
,
J.
, 2006, “
Functional Extensions of Dip Pen Nanolithography: Active Probes and Microfluidic Ink Delivery
,”
Smart Mater. Struct.
,
15
(
1
), p.
S124
.
24.
Culpepper
,
M. L.
, and
Anderson
,
G.
, 2004, “
Design of a Low-Cost Nano-Manipulator Which Utilizes a Monolithic, Spatial Compliant Mechanism
,”
Precis. Eng.
,
28
(
4
), pp.
469
482
.
You do not currently have access to this content.