The effects of different prestrain levels, paths, and subsequent annealing on the postannealing mechanical properties of AA5182-O were investigated. Aluminum sheet specimens were prestrained in uniaxial, plane strain, and equibiaxial tension to several equivalent strain levels, annealed at 350 °C for short (10 s) and long (20 min) durations and then tested for postannealing mechanical properties, including tensile properties, anisotropy, and forming limits. The tensile properties, R-values at 0, 45, and 90 deg relative to the sheet rolling direction, and forming limit diagrams (FLDs) exhibited dependencies on prestrain and annealing history. The importance of the process variables and their effects were identified via designed experiments and analysis of variance. Three-dimensional digital image correlation, which captured the onset of local necking, was employed in the FLD development. Texture in the as-received and deformed sheets was investigated with electron backscatter diffraction and provided a means for linking prestrain and static recovery or recrystallization with microstructure. This guided the understanding of the mechanical property changes observed after preforming and annealing. Ultimately, the expanded forming limit curve demonstrated the advantage of annealing in extending the formability of strained AA5182-O.

References

1.
Li
,
D.
,
Ghosh
,
A.
, 2003,
Tensile Deformation Behavior of Aluminum Alloys at Warm Forming Temperatures
,
Mat. Sci. Eng. A.
,
352
, pp.
279
286
.
2.
Jun
,
G.
, and
Hosford
,
W. F.
, 1986, “
Flow Behavior of an Aluminum-Killed Steel After Tensile Prestraining and Strain-Aging
,”
Metall. Trans.
,
17A
, pp.
1573
1575
.
3.
Fridlyander
,
I. N.
,
Sister
,
V. G.
,
Grushko
,
O. E.
,
Berstenev
,
V. V.
,
Sheveleva
,
L. M.
, and
Ivanova
,
L. A.
, 2002, “
Aluminum Alloys: Promising Materials in the Automotive Industry
,”
Met. Sci. Heat Treat.
,
44
(
9–10
), pp.
365
370
.
4.
Krajewski
,
P. E.
, 2007, “
Methods for Production of Stamped Sheet Metals Panels
,” U.S. Patent No. 7,260,972,
B2
.
5.
Lee
,
T. M.
,
Hartfield-Wünsch
,
S. E.
, and
Xu
,
S.
, 2006, “
Demonstration of the Preform Anneal Process to Form a One-Piece Aluminum Door Inner Panel
,” SAE Paper No. 2006-01-0987.
6.
Li
,
J. J.
,
Kim
,
S.
Lee
,
T. M.
,
Krajewski
,
P. E.
,
Wang
,
H.
, and
Hu
,
S. J.
, 2011, “
The Effect of Prestrain and Subsequent Annealing on the Mechanical Behavior of AA5182-O
,”
Mater. Sci. Eng. A.
,
528
, pp.
3905
3914
.
7.
Achni
,
D.
Hoppersad
,
O. S.
, and
Lademo
,
O.-G.
, 2009, “
Behaviour of Extruded Aluminum Alloys Under Proportional and Non-Proportional Strain Paths
,”
J. Mater. Process. Technol.
,
209
, pp.
4750
4764
.
8.
Barlat
,
F.
, Ferreira
Duarte
,
J. M.
,
Gracio
,
J. J.
,
Lopes
,
A. B.
, and
Rauch
,
E. F.
, 2003, “
Plastic Flow for Non-Monotonic Loading Conditions of an Aluminum Alloy Sheet Sample
,”
Int. J. Plast.
,
19
, pp.
1215
1244
.
9.
Graf
,
A.
, and
Hosford
,
W.
, 1993, “
Effect of Changing Strain Paths on Forming Limit Diagrams of Al 2008-T4
,”
Metall. Trans.
,
24
(
A
), pp.
2497
2501
.
10.
Narayanasamy
,
R.
,
Ravindran
,
R.
,
Manonmani
,
K.
, and
Satheesh
,
J.
, 2009, “
A Crystallographic Texture Perspective Formability Investigation of Aluminium 5052 Alloy Sheets at Various Annealing Temperatures
,”
Mater. Des.
,
30
, pp.
1804
1817
.
11.
Marciniak
,
Z.
, and
Kuczynski
,
K.
, 1967, “
Limit Strains in the Processes of Stretch-Forming Sheet Metal
,”
Int. J. Mech. Sci.
,
9
, pp.
609
620
.
12.
Li
,
J. J.
,
Hu
,
S. J.
,
Carsley
,
J. E.
,
Lee
,
T. M.
,
Hector
,
L. G.
, Jr.
, and
Mishra
,
S.
, 2010, “
Effects of Pre-Strain, and Annealing on Post-Anneal Mechanical Properties and Forming Limits of AA5182-O
,” Research Report, General Motors Collaborative Research Lab in Advanced Vehicle Manufacturing, the University of Michigan.
13.
ASTM E8/E8M-09
, 2009,
Standard Test Methods for Tension Testing of Metallic Materials
,
ASTM International
,
West Conshohocken, PA
.
14.
ASTM E517-00
, 2006,
Standard Test Method for Plastic Strain Ratio r for Sheet Metal
,
ASTM International
,
West Conshohocken, PA
.
15.
16.
Huang
,
G.
,
Sriram
,
S.
, and
Yan
,
B.
, 2008, “
Digital Image Correlation Technique and its Application in Forming Limit Curve Determination
,”
Proceedings of the IDDRG 2008 International Conference
,
International Deep Drawing Research Group
, June 16–18,
Olofström, Sweden
.
17.
Tong
,
W.
, and
Zhang
,
N.
, 2007, “
On Serrated Plastic Flow in an AA5052-H32 Sheet
,”
ASME J. Eng. Mater. Technol.
,
129
, pp.
332
341
.
18.
Zavattieri
,
P. D.
,
Savic
,
V.
,
Hector
,
L. G.
, Jr.
,
Fekete
,
J. R.
,
Tong
,
W.
, and
Xuan
,
Y.
, 2009, “
Spatio-Temporal Characteristics of the Portevin-Le Chatelier Effect in Austenitic Steel With Twinning Induced Plasticity
,”
Int. J. Plast.
,
25
, pp.
2298
2330
.
19.
Schwartz
,
A. J.
,
Kumar
,
M.
,
Adams
,
B. L.
, and
Field
,
D. P.
,
, 2009,
Electron Backscatter Diffraction in Materials Science
,
Springer Science+Business Media
,
LLC, New York
, p.
256
.
20.
MINITAB, version 15, 2009, Minitab Inc. http://www.minitab.comhttp://www.minitab.com.
21.
Savic.
B
,
Hector
,
L. G.
, Jr.
,
Kim
,
S.
, and
Verma
,
R.
, 2010, “
Local Mechanical Properties of a Magnesium Hood Inner Component Formed at Elevated Temperature
,”
ASME J. Eng. Mater. Technol.
,
132
, p.
021006
.
22.
Csontos
,
A. A.
, and
Sarke
,
E. A.
, 2005, “
The Effect of Inhomogeneous Plastic Deformation on the Ductility and Facture Behavior of Age Hardenable Aluminum Alloys
,”
Int. J. Plast.
,
21
(
6
), pp.
1097
1118
.
23.
Hasegawa
,
T.
,
Takahashi
,
T.
, and
Okazaki
,
K.
, 2000, “
Deformation Parameters Governing Tensile Elongation, for a Mechanically Milled Al-1.1at.%Mg-1.2at.%Cu Alloy Tested in Tension at a Constant True Strain Rates
,”
Acta Mater.
,
48
(
8
), pp.
1789
1796
.
24.
Beaver
,
P. W.
, 1983, “
Localized Thinning, Fracture and Formability of Aluminum Sheet Alloys in Biaxial Tension
,”
J. Mech. Work. Technol.
,
7
, pp.
215
231
.
You do not currently have access to this content.